Type theories, (intuitionistic) set theories and univalence

Michael Rathjen

University of Leeds

Axiomatic Thinking

Lisboa, 11 de outubro de 2017

Hilbert 1930

"Wir müssen wissen! Wir werden wissen!"

Dedicated to the memory of

► Grigori Mints (June 7, 1939 - May 29, 2014)

William Craig (November 13, 1918 - January 13, 2016)

Solomon Feferman (December 13, 1928 - July 26, 2016)

Jack Silver (April 23, 1942 - December 22, 2016)

Vladimir Voevodsky (June 4, 1966 - September 30, 2017)

Why Intuitionistic Theories?

- Philosophical Reasons: Brouwer, Dummett, Martin-Löf, Feferman, Linnebo, ...
- Computational content: Witness and program extraction from proofs.
- Intuitionistically proved theorems hold in more generality: The internal logic of most topoi is intuitionistic logic.
- Axiomatic Freedom Adopt axioms that are classically refutable but interesting and desirable.

Axiomatic Freedom or "New Worlds"

- May be it would be nice
- ▶ if all $f : \mathbb{N} \to \mathbb{N}$ were computable and those pesky non-standard models of **PA** didn't exist?
- ▶ if all $f : \mathbb{R} \to \mathbb{R}$ were continuous and the world were Brouwerian?
- if all functions between manifolds were differentiable? (nilpotent non-zero infinitesimals)
- ▶ if there existed a set A with $\mathbb{N} \subseteq A$ such that A is in 1-1 correspondence with $A \rightarrow A$?
- if all $f : \mathbb{R} \to \mathbb{R}$ were measurable?
- if all homotopically equivalent sets could be viewed as identical (univalence)?

Scientific American, Quanta Magazine, Nautilus, ...

Voevodsky's Univalent Foundations require not just one inaccessible cardinal but an infinite string of cardinals, each inaccessible from its predecessor.

Michael Harris, Mathematics without apologies, 2015.

Ian Hacking, Why is there Philosophy of Mathematics at All?, 2014.

Some "research" questions

 Take Martin-Löf type theory with all type constructors (MLTT), including W-types and infinitely many universes

 $\mathcal{U}_0, \mathcal{U}_1, \mathcal{U}_2, \ldots$

- How strong is this theory?
- Not difficult to show that ZFC plus infinitely many inaccessibles is an upper bound.
- How strong is MLTT plus univalence for all universes?
- ▶ Now add the impredicative type **Prop** of propositions together with

 $\mathsf{Prop}\,:\,\mathcal{U}_0$

How strong is this theory? (aka Calculus of inductive Constructions (CiC)).

What are the set-theoretic counterparts (intuitionistic set theories) of such type theories?

Type theory

- > Types are structured collections of objects such as natural numbers.
- 1908 Russell: Mathematical logic as based on the theory of types
- 1910, 1912, 1913 Russell & Whitehead: Principia Mathematica
- ▶ 1926 Hilbert: Über das Unendliche
- ▶ 1940 Church: A formulation of the simple theory of types
- ▶ 1967 de Bruijn: AUTOMATH
- ▶ 1971 Martin-Löf: A Theory of Types

MLTT Judgements

A judgement has one of the following four forms:

- A type ("A is a well-formed type")
- A = B type
 ("A and B are equal well-formed types")
- ► a : A

("a is a well-formed term of type A")

▶ *a* = *b* : *A*

("a and b are equal well-formed terms of type A")

Martin-Löf type theory as a deductive systems

One deduces sequents

$\mathsf{\Gamma}\vdash\mathfrak{A}$

where Γ , called the **context**, is made up of variable declarations (x : A) in the "right" order of dependency, and \mathfrak{A} is a judgement.

The rules are divided into formation, introduction, elimination and equality rules.

The basic dependent type theory **MLTT**_{basic}

 $MLTT_{basic}$ is the dependent type theory with the following forms of type:

- Bool, Empty and the type Nat of natural numbers.
- List(A), A + B and Id(A, a, b).
- Dependent product: $\prod_{x:A} B(x)$
- Dependent sum: $\sum_{x:A} B(x)$

The Curry-Howard representation of the logical operations

- The standard approach of representing logic in Martin-Löf type theory is to view propositions (formulae, sentences) as types.
- The Σ type represents \exists .
- The Π type represents \forall .
- The \times type represents \wedge .
- The + type represents \lor .
- The \rightarrow type represents \supset .
- Empty represents falsum.
- Id(A, a, b) to represent equality on A.

The full system MLTT

has the W-type

 $W_{x:A}B(x)$

which is the type of *well-founded trees* over the family of types $(B(x))_{x:A}$. W-types are a generalization of such types as natural numbers, lists, binary trees. They capture the "recursion" aspect of any inductive type.

And it has infinitely many universes

 $\mathcal{U}_0, \mathcal{U}_1, \mathcal{U}_2, \mathcal{U}_3, \dots$

► A universes is a type inhabited by types. Every universe is closed under all the previous type constructions and U_i : U_{i+1}.

Universes and Notation

- \blacktriangleright Universes ${\cal U}$ are types that contain types as elements.
- They contain Bool, Empty, Nat, and are closed under all the (other) type forming operations. E.g.

 $\frac{\Gamma \vdash A : \mathcal{U} \quad \Gamma, \ x : A \vdash B(x) : \mathcal{U}}{\Gamma \vdash (\prod_{x : A} B(x) : \mathcal{U})}$

- ▶ Denote by **MLTT**[−] the theory **MLTT** without *W*-types.
- ► MLTT_n is the subsystem with only n universes U₀,...,U_{n-1}. Furthermore, MLTT_n also lacks the W-type constructor.

Two Identities

- General equality rules (reflexivity, symmetry, transitivity) and substitution rules, simultaneously at the level of terms and types, apply to judgements. Re-write rules.
- But there is also propositional identity which gives rise to types Id(A, s, t) and allows for internal reasoning about identity.

Shall write $s =_A t$ rather than Id(A, s, t)

Higher identity structure on any type A

$$a =_{A} a'$$

$$p =_{a=_{A}a'} p'$$

$$\theta =_{p=_{a=_{A}a'}p'} \theta'$$
:

In extensional type theory (Martin-Löf 1979, 1984) this hierarchy collapses, since $a =_A a'$ contains at most 1 element.

Not so in intensional type theory (Martin-Löf 1973, 1986). Groupoid model (Hofmann, Streicher 1994), Kan simplicial sets (Voevodsky 2010), Kan cubical sets (Bezem, Coquand, Huber 2013).

Extensional identity

(Id–Formation)	$\frac{\Gamma \vdash A \text{ type } \Gamma \vdash a : A \Gamma \vdash b : A}{\Gamma \vdash a =_A b \text{ type }}$
(Id–Introduction)	$\frac{\Gamma \vdash a : A}{\Gamma \vdash 1_a : a =_A a}$
(Id-Uniqueness)	$\frac{\Gamma \vdash p : a =_A b}{\Gamma \vdash p = 1_a : a =_A b}$
(Id–Reflection)	$\frac{\Gamma \vdash p : a =_A b}{\Gamma \vdash a = b : A}.$

Reflection makes judgemental identity undecidable, i.e., the (type checking) questions whether Γ ⊢ a = b : A or Γ ⊢ a : A hold become undecidable.

New identity laws, Martin-Löf 1973

Indiscernability of Identicals:

If $p : a =_A b$ and P(a) then P(b). This entails a transport function $t(p) : P(a) \rightarrow P(b)$.

Generalization: Now suppose that

 $d(x) : C(x, x, 1_x)$

holds for all x : A.

Then *d* can be extended to a function \tilde{J}_d on

$$\sum_{x,y:A} x =_A y$$

i.e., if a, b : A and $p : a =_A b$ then

$$\begin{split} \widetilde{\mathsf{J}}_d(a,b,p) &: \quad C(a,b,p) \ d(a) &= \widetilde{\mathsf{J}}_d(a,a,1_a) &: \quad C(a,a,1_a) \end{split}$$

Rules for intensional identity

$$(\mathsf{Id-Elim}) \qquad \begin{array}{l} \Gamma \vdash a : A \\ \Gamma \vdash b : A \\ \Gamma \vdash p : a =_A b \\ \Gamma, x : A, y : A, z : x =_A y \vdash C(x, y, z) \text{ type} \\ \overline{\Gamma, x : A \vdash d(x) : C(x, x, 1_x)} \\ \hline \Gamma \vdash \mathsf{J}(d, a, b, p) : C(a, b, p) \end{array}$$

$$(\mathsf{Id}-\mathsf{Eq}) \qquad \frac{\begin{array}{c} \Gamma \vdash a : A \\ \Gamma, x : A, y : A, p : x =_A y \vdash C(x, y, p) \text{ type} \\ \Gamma, x : A \vdash d(x) : C(x, x, 1_x) \\ \hline \Gamma \vdash \mathsf{J}(d, a, a, 1_a) = d(a) : C(a, a, 1_a) \end{array}$$

Strengths of **MLTT**?

- 1980s work on Martin-Löf type theory by Aczel, Beeson, Feferman, Hancock, Jervell,
- Early 1990's: proof-theoretic tools were in place to determine the exact strength of Martin-Löf type theories with finitely many universes, infinitely many universes, W-types, no W-types, super univ., Mahlo-univ., etc.
- ▶ E. Palmgren (1992)
- ▶ R. (1993)
- A. Setzer (1998)

Myhill's Constructive set theory 1975

CST based on intuitionistic logic

Many sorted system: numbers, sets, functions

Axioms (simplified)

- Extensionality
- Pairing, Union, Infinity (or \mathbb{N} is a set)
- Bounded Separation
- **Exponentiation**: A, B sets $\Rightarrow A^B$ set.
- Replacement
- Set Induction Scheme

Moving between type theory and set theory

The types-as-sets interpretation (*TaS*).

type theory $\,\,\hookrightarrow\,\,$ set theory

Aczel (late 1970's): The sets-as-trees interpretation (SaT)

set theory $\,\,\hookrightarrow\,\,$ type theory

- R., S. Tupailo, Characterizing the interpretation of set theory in Martin-Löf type theory, APAL 2006.
- ▶ Cesare Galozzi, Variations: Uses *h*-sets as index sets for the interpretation.

Constructive Zermelo-Fraenkel set theory, CZF

- Extensionality
- Pairing, Union, Infinity
- Bounded Separation
- Subset Collection

For all sets A, B there exists a "sufficiently large" set of multi-valued functions from A to B.

Strong Collection

$$(\forall x \in a) \exists y \ \varphi(x, y) \rightarrow \\ \exists b \ [(\forall x \in a) \ (\exists y \in b) \ \varphi(x, y) \land (\forall y \in b) \ (\exists x \in a) \ \varphi(x, y)]$$

Set Induction scheme

Three notions of large set

- ▶ A set *A* is said to be **regular** if it is inhabited and transitive and whenever $B \in A$ and *R* is a set relation such that $\forall x \in B \exists y \in A R(x, y)$ then there exists $C \in A$ such that $\forall x \in B \exists y \in C R(x, y)$ and $\forall y \in C \exists x \in B R(x, y)$.
- Denote by CZF⁻ the theory CZF without the Set Induction scheme.
- A set *I* is said to be weakly inaccessible if *I* is a regular set such that $I \models CZF^-$.
- A set *I* will be called **inaccessible** if *I* is weakly inaccessible and for all $x \in I$ there exists a regular set $y \in I$ such that $x \in y$.

An 'algebraic' characterization of "inaccessibility"

Proposition (CZF⁻)

A set I is weakly inaccessible iff I is a regular set such that the following are satisfied:

- 1. $\omega \in I$,
- 2. $\forall a \in I \cup a \in I$,
- 3. $\forall a \in I \ [a \text{ inhabited } \Rightarrow \bigcap a \in I],$
- 4. $\forall A, B \in I \exists C \in I \quad C \text{ is full in } mv(^{A}B).$

How strong is **MLTT**⁻ plus Univalence?

Recall that CZF^- denotes the theory CZF without the Set Induction scheme.

Theorem 1. (Crosilla, R. 2002)

The theory

 $CZF^- + \forall x \exists I [x \in I \land I \text{ weakly inaccessible}]$

has the same strength as

ATR_0

so has proof-theoretic ordinal Γ_0 .

Proposition. MLTT⁻ can be interpreted in

 $\mathbf{CZF} + \mathsf{weak}\text{-INACC}$

where weak-INACC stands for $\forall x \exists I \ [x \in I \land I \ weakly inaccessible]$.

Theorem 2. **MLTT**⁻ + UA can be interpreted in **CZF** + weak-INACC, too. Here UA asserts that all universes are univalent.

The Bezem-Coquand-Huber constructive Kan cubical sets model can be done in this theory.

Corollary. All the theories $MLTT^-,\,CZF+$ weak-INACC, and $MLTT^-+$ UA are of the same strength.

It does not matter whether the identity type is extensional or intensional.

It was known by work of Jervell 1978 and Feferman 1980 that (extensional) MLTT⁻ has strength Γ_0 .

Univalence

▶ Let $f, g : \prod_{x:A} P(x)$. A homotopy from f to g is a dependent function of type

$$(f \simeq g) :\equiv \prod_{x:A} (f(x) =_{P(x)} g(x)).$$

• Let $f : A \vdash B$.

$$\mathsf{isequiv}(f) :\equiv (\sum_{g:B \to A} (f \circ g \simeq \mathsf{id}_B)) \times (\sum_{h:B \to A} (h \circ f \simeq \mathsf{id}_A)).$$

•
$$(A \simeq B) := \sum_{f:A \to B} isequiv(f).$$

▶ For types A, B : U there is a canonical function

$$idtoeqv: (A =_{\mathcal{U}} B) \vdash (A \simeq B).$$

The Univalence Axiom asserts that this function is itself an equivalence:

$$(A =_{\mathcal{U}} B) \simeq (A \simeq B).$$

Strength of MLTT

Theorem:

The following theories prove the same arithmetical statements:

(i) MLTT.

- (ii) The extensional type theory **MLTT**^{ext}.
- (iii) **CZF** plus for every $n \in \mathbb{N}$, an axiom asserting that there is a tower of *n*-many inaccessible sets, **CZF** + $\bigcup_n INACC_n$.
- (iv) $\mathbf{CZF} + \bigcup_{n} \mathrm{INACC}_{n} + \mathrm{RDC} + Presentation Ax$,

where RDC signifies the relativized dependent choices axiom.

"Classical" Strength of MLTT

It's the same as

 $KP + \{n\text{-many recursively inaccessible ordinals}\}_{n \in \mathbb{N}}$

or

Δ_2^1 -CA + {*n* tower of β -models of Δ_2^1 -CA} $_{n\in\mathbb{N}}$

- The strength of all of these theories is considerable but tiny when compared to Π¹₂-CA₀.
- Does the addition of the Univalence Axiom change that picture?
- No, since the cubical model of Bezem, Coquand, Huber can be done "constructively" in type theory, though not all types have been included yet.

For details see: M. Rathjen, Proof Theory of Constructive Systems: Inductive Types and Univalence, arXiv:1610.02191 (2016). To appear in: Feferman on Foundations: Logic, Mathematics, Philosophy, G. Jäger, W. Sieg(Eds.), (Springer 2017).