A semilinear elliptic problem
with a singularity at \(u = 0 \)

FRANÇOIS MURAT

Laboratoire Jacques-Louis Lions
Université Pierre et Marie Curie (Paris VI) and CNRS
Paris, France

email: murat@ann.jussieu.fr

In this joint work with Daniela Giachetti (Rome, Italy) and Pedro J. Martínez Aparicio (Cartagena, Spain) (see [3] and [4]), we consider the semilinear elliptic equation with homogeneous Dirichlet boundary condition

\[-\text{div} A(x) D u = F(x, u) \text{ in } \Omega, \quad u = 0 \text{ on } \partial \Omega, \quad u \geq 0 \text{ in } \Omega,\]

where the nonlinearity \(F(x, u) \) is singular at \(u = 0 \), and more precisely where \(F \) is a Carathéodory function \(F : \Omega \times [0, +\infty] \to [0, +\infty] \) which satisfies

\[0 \leq F(x, s) \leq \frac{h(x)}{\Gamma(s)} \text{ a.e. } x \in \Omega, \forall s > 0,\]

with \(h \geq 0, h \in L^r(\Omega) \subset H^{-1}(\Omega) \) and \(\Gamma : [0, +\infty] \to [0, +\infty] \) a \(C^1 \), Lipschitz-continuous, nondecreasing function such that \(\Gamma(0) = 0 \) and \(\Gamma(s) > 0 \) for every \(s > 0 \). A model for such a function \(F(x, s) \) is for example given by

\[F(x, s) = \frac{f(x)}{\exp\left(-\frac{1}{s}\right)} \left(2 + \sin\left(\frac{1}{s}\right) \right) + \frac{g(x)}{s^\gamma} + l(x) \text{ a.e. } x \in \Omega, \forall s > 0,\]

where the functions \(f, g \) and \(l \) are nonnegative and belong to \(L^r(\Omega) \).

The main difficulty is to give a convenient definition of the solution of this problem, in particular when \(\Gamma(s) \ll s \) for \(s \) close to 0.

We give such a definition and we prove the existence and stability of this solution, as well as its uniqueness when \(F(x, s) \) is non increasing in \(s \).

This work has been inspired by the papers [2] of Lucio Boccardo and Luigi Orsina and [1] of Lucio Boccardo and Juan Casado-Diaz.

References:

