Poster	Title	Day
PFHWB01	Supercritical co2 Extraction of Oil from Jatropha Curcas Seeds	
PFHWB02	Supercritical Extraction of Filter Tea Factory By product: Extraction of Yarrow Herbal Dust	
PFHWB03	Combined High Pressure Extraction Process to Obtain Phenolic Compounds from Biquinho Pepper (Capsicum Chinense)	-
PFHWB04	Supercritical Fluids Extraction of Sambucus Nigra for Potential Application in Nanocarriers	
PFHWB05	Extraction of Pomegranate Fractions: Influence of Methods on Total Yield, Polyphenols and Sugar Contents	
PFHWB06	Natural Deep Eutectic Solvent Based Pressurized Liquid Extraction of Polysaccharides from Brown Seaweed	
PFHWB07	Subcritical Water Hydrolysis for the Production of Bioactive Peptides from Tuna Skin Collagen	
PFHWB08	Extraction of Bioactive Compounds from Oyster (Crassostrea gigas) by Pressurized Hot Water Extraction	
PFHWB09	Deterpenation and Concentration of Sulphur Terpenoids from Agathosma Essential Oil using Supercritical CO ₂ in a Counter-Current Column	
PFHWB10	Subcritical Water Extraction and Reaction of Bioactive Pectic Polysaccharides from Pomegranate Biomass	
PFHWB11	Unveiling Chemotherapeutic Potential of Orange Peels and Brassica SCF Extracts in Human Colorectal Cancer Cell Spheroids	26 th April
PFHWB12	Microparticle-Based Delivery Systems for Food Applications	
PFHWB13	Nanoencapsulation of ω -3 Rich Fish Oil in Polycaprolactone by Supercritical Fluid Extraction of Emulsions	
PFHWB14	Effect of the Pretreatment and Size Particle Distribution in Oilseeds Extraction with Supercritical CO ₂	
PFHWB15	Supercritical CO ₂ Extraction of Carotenoids from Persimmon Fruit: Design of Experiment and Modelling	
PFHWB16	Temperature and Density Effects of the scCO ₂ Extraction of Spilanthol from Spilanthes Acmella Flowers	
PFHWB17	Inactivation of the Microbiota and Effect on the Quality Attributes of Pineapple Juice Using a Continuous Flow Ultrasound-Assisted Supercritical CO ₂ System	
PFHWB18	Impact of Extraction Technology on Valorisation of Plum Seed as New Protein Source: Supercritical Fluid Extraction vs Cold Pressing	
PFHWB20	Carbon Dioxide for a Galenic Approach: Which Uses and Benefits for Cosmetic?	
PFHWB21	Supercritical CO ₂ Extraction of Agastache foeniculum Aerial Parts: Composition, Modelling and Comparison with Hydrodistillation	
PFHWB22	Characterization of Ocimum Basilicum L. Essential Oil and Volatiles Obtained by SFE-CO2 Extraction	
PFHWB23	Integrated Methods for the Entire Recovery of Passion Fruit By-Products Using Sub/Supercritical Technology	
PFHWB24	High Pressure Carbon Dioxide–Assisted Extraction (HPCDAE) of Bioactive Ingredients from Port Wine Lees	1
PFHWB25	Preparation of Liposomes Loaded with Hydrophilic and Hydrophobic Bioactives Using Supercritical Carbon Dioxide	
PFHWB26	The Prediction of the Best Co-solvents for Supercritical CO_2 Extraction of Bioactive Compounds with the Hansen Solubility Theory	
PFHWB27	High Pressure Carbon Dioxide Technology. Application to Orange Juice	
PFHWB28	Extraction of Pesticides from Banana Flour (Musa spp) Using Supercritical Carbon Dioxide: Experiments and Modelling	
PFHWB29	Supercritical CO ₂ Extraction of Phenolic Acids from Potato Peels	
PFHWB30	Antibacterial and Antioxidant Eroperties extracts of Jatropha Gossypifolia L. using Methanol, Ethanol and Supercritical CO ₂ Extraction	27 th April
PFHWB31	SuperLip Process for the Production of Liposomes Loaded with Essential Oils	
PFHWB33	Integrated SAS-Fluidized Bed Coating of Curcumin on Lactose Surface for Pulmonary Delivery	
PFHWB34	Impact of Temperature, Pressure and pH on Subcritical Water Extraction (SWE) of Hydroxytyrosol from Olive Pomace	
PFHWB35	Effect of High Pressure Carbon Dioxide (HPCD) Treatment on Enzyme Inactivation and Other Properties of Tomato Juice	
PFHWB36	Elaboration of Innovative Medical Devices by Dispersing Fatty Acid Eutectic Blends on Gauzes Using PGSS Process	
PFHWB37	Multifunctional Nanovesicles for Drug Delivery Applications	
PFHWB38	Microbial Inactivation due to SC-CO ₂ Drying Process	
PFHWB39	Sustainable Extraction of Bioactive Compounds from Cocoa Bean Hulls (Theobroma cacao)	
PFHWB40	Optimization of Supercritical CO ₂ Extraction of Lavandula angustifolia L. Focused on Coumarin and Herniarin	
PFHWB41	Recovery of Antioxidant Compounds from Bravo de Esmolfe Apple Variety using High Pressure Technology	
PFHWB42	Comparison of Glycerolysis of Sardine Oil by Lipozyme 435 in Solvent Free and SC-CO ₂ Media	
PFHWB43	Integrated Methods for the Entire Recovery of Passion Fruit By-Products Using Sub/Supercritical Technology	

PK11 Extraction of Triglycerides from Nannochloropsis sp. Using Supercritical CO ₂ as Solvent PK12 Binary Phase Equilibrium, Density and Viscosity Measurement of 100 GS and 200 GSt Polydimethylsiloavae in CO ₂ PK13 Measurement and Modelling of Sorption and Diffusion of Supercritical CO ₂ in Synthetic- and Natural-Based Polymers PK14 Phase Behavior for the 2-(trimethylsil/ovylethyl methacrylate and 3-(trimethoxysilyl)propyl Methacrylate in Supercritical CO ₂ at Various Temperatures and Pressures Up to 20 MPa PK13 Liquid-Vapor Equilibrium Data, Density and other Volumetric Properties of Carbon Dioxide + Acrylic Acid Binary Mixtures at High Pressure PK14 Phase Behavior for the 2-trimethylsil/ovylethyl methacrylate and 3-(trimethoxysilv)lpropyl Methacrylate in Supercritical Vater Oxidation Process Using Aspen Plus* PK15 Liquid-Vapor Equilibrium Data, Density and other Volumetric Properties of Carbon Dioxide + Acrylic Acid Binary Mixtures at High Pressure Dioxide Water Ont the Solubility of Carbon Dioxide Indicugate PK15 Modelling Nucleation and Cell Size During the Continuous Process of Extrusion Assisted by Supercritical CO ₂ PK20 Thermodynamic Modeller for Natural Products: Phase Equilibrium Study of the Ternary System CO ₇ + H20 + Ethanol at Elivated Pressure PK22 High-Pressure Phase Equilibria of the Pseudo-Ternary System Carbon Dioxide + Ethanol + Fish Oil PK22 High-Pressure Phase Equilibria of the Pseudo-Ternary System Carbon Dioxide + Ethanol	11 High-pressure Solubility Data of Reservation in Supercritical Carbon Dioxide at 308.15K Solubility of Tocopherol + Palmite Addi Discrittorial Dioxide at 308.15K 102 Solubility of Tressure Phase Equilibrium CO/Ethy Acctate/PLGA Nodeling of High Pressure Phase Equilibrium CO/Ethy Acctate/PLGA 103 Thermodynamic Characterization of Fluorinated Ionic Liquids to E Used as Artificial Doxygen Carries 104 Thermodynamic Characterization of Fluorinated Ionic Liquids to E Used as Artificial Doxygen Carries 105 Insights Into the Evolution of Hydrogen Bonding from Ambient to Supercritical Colous Acharacterization 105 Insights Into the Evolution of Hydrogen Bonding from Ambient to Supercritical Fluorinate Pressure 106 Sinulation of Prespiration Bonding and Their Application in Empressions Acharacterization 105 Phase Insights Into the Evolution of Hydrogen Bonding Toto Andrea Textiles Using Supercritical Fluorine Pressure April 106 Analysis of Anthraquinone and Indigoid Colourants in Andrean Textiles Using Supercritical Fluorine Pressure April 116 Entertain Modelling of Sorption and Diffusion of Supercritical Col, in Synthetic- and Natural-Based Polymers Phase Behavior for the 2-ftrimethyshiphilphilphilphilphilphilphilphilphilph	PK01 PK02 PK03 PK04 PK05 PK06 PK07 PK08 PK09 PK10 PK11 PK12 PK13 PK14 PK15 PK16 PK17 PK18 PK19 PK20 PK21 PK22 PK23 PK26 PK28 PK29 PK30 PK31 PK33 PK34 PK35 PK34	High-pressure Solubility Data of Resveratrol in Supercritical Carbon Dioxide at 308.15K Solubilities of Tocopherol + Palmitic Acid in Supercritical Carbon Dioxide at 308.15 and 328.15 K Modeling of High Pressure Phase Equilibrium CO2/Ethyl Acetate/PLGA Thermodynamic Characterization of Fluorinated Ionic Liquids to Be Used as Artificial Oxygen Carriers Insights Into the Evolution of Hydrogen Bonding from Ambient to Supercritical Conditions Simulation of Precipitation Phenomena in Supercritical Fluids Processes Liquid-Vapor Equilibrium Data, Density and Other Volumetric Properties of Carbon Dioxide + Acrylic Acid Binary Mixtures at High Pressure High Pressure Bubble- and Dew-Point Data of CO2 with Detergent Range Alkanes and Alcohols Rheological Behavior of Nanofluids and Their Application in Emulsion Inversion under Pressure Analysis of Anthraquinone and Indigoid Colourants in Andean Textiles Using Supercritical Fluid Chromatography Extraction of Triglycerides from Nanochloropsis sp. Using Supercritical CO2 as Solvent Binary Phase Equilibrium, Density and Viscosity Measurement of 100 cSt and 200 cSt Polydimethylsiloxane in CO2 Measurement and Modelling of Sorption and Diffusion of Supercritical CO2 in Synthetic- and Natural-Based Polymers Phase Behavior for the 2-(trimethylsilyloxy)ethyl methacrylate and 3-(trimethoxysilyl)propyl Methacrylate in Supercritical CO2 at Various Temperatures and Pressure Up to 20 MPa Liquid-Vapor Equilibrium Data, Density and other Volumetric Properties	
PR02 Solubilities of Tacopherol + Palmitic Acid in Supercritical Carbon Dioxide at 308.15 and 328.15 K PR03 Modeling of High Pressure Phase Guillithum CO_C/ENV AcetatAP/ELG PR04 Thermodynamic Characterization of Fluorinated Ionic Liquids to Be Used as Artificial Oxygen Carriers PR05 Insights Into the Evolution of Hydrogen Bonding from Ambient to Supercritical Conditions PR06 Simulation of Precipitation Phenomean in Supercritical Fluids Processes PR07 Liquid-Vapor Equilibrium Data, Density and Other Volumetric Properties of Carbon Dioxide + Acrylic Acid Binary Mixtures at High Pressure PR08 Relogical Behavior of Nanofhuids and Their Application in Emulsion Inversion under Pressure PR11 Extraction of Ting/reveloped Fluorides from Annonchroppiss pp. Libring Supercritical Co: as Solvent PR11 Extraction of Ting/reveloped Fluorides from Annonchroppiss pp. Libring Supercritical Co: as Solvent PR11 Extraction of Ting/reveloped Fluorides from Annonchroppiss pp. Libring Supercritical CO: as Solvent PR11 Binary Phase Equilibrium, Data, Density and Other Volumetric Properties of Carbon Dioxide + Acrylic Acid Binary Mixtures at High Pressure PR14 Phase Behavior for the 2-(trimethylik)loxyleH) methacrylate and 3-(trimethoxylik)lpropyl Methacrylate in Supercritical Co: as Solvent PR11 Extraction of Ting/reveritical Marka and ther Volumetric Properties of Carbon D	102 Solubilities of Tocopherol + Paimtic Add in Supercritical Carbon Dioxide at 308.15 and 328.15 K 103 Mediang of High Pressure Phase Equilibrium OC/20HyA Actatury PLGA 104 Insights into the Evolution of Hydrogen Bonding from Ambient to Supercritical India Processes 105 Insights into the Evolution of Hydrogen Bonding from Ambient to Supercritical Carbon Dioxide + Acrylic Acid Binary 105 High Pressure 106 High Pressure 107 Latatotical Final Addition 108 High Pressure 108 High Pressure 109 Analysis of Anthraquinone and Indigoid Colourants in Andean Testiles Using Supercritical Fluid Chromatography 112 Manaysis of Anthraquinone and Indigoid Colourants in Andean Testiles Using Supercritical Col in Synthetic- and Natural Based 112 Masurement and Modelling of Sorption and Diffusion of Supercritical Col in Synthetic- and Natural Based 113 Measurement and Modelling of Fornet Supercritical Col in Synthetic- and Natural Based 114 Mydelling Nucleation and Col Size During the Control Synthetic Col Carbon Dioxide + Acrylic Acid Binary 114 Mydelling Nucleation and Col Size During the Control Synthetic Col Carbon Dioxide + Acrylic Acid Binary 114 Huasurements: That Affect Basprecritical Col Carbon Dioxide	PK02 PK03 PK04 PK05 PK06 PK07 PK08 PK07 PK08 PK09 PK10 PK11 PK12 PK13 PK14 PK15 PK16 PK17 PK18 PK19 PK20 PK21 PK23 PK25 PK26 PK28 PK29 PK30 PK31 PK33 PK34 PK35 PM01	Solubilities of Tocopherol + Palmitic Acid in Supercritical Carbon Dioxide at 308.15 and 328.15 K Modeling of High Pressure Phase Equilibrium CO ₂ /Ethyl Acetate/PLGA Thermodynamic Characterization of Fluorinated Ionic Liquids to Be Used as Artificial Oxygen Carriers Insights Into the Evolution of Hydrogen Bonding from Ambient to Supercritical Conditions Simulation of Precipitation Phenomena in Supercritical Fluids Processes Liquid-Vapor Equilibrium Data, Density and Other Volumetric Properties of Carbon Dioxide + Acrylic Acid Binary Mixtures at High Pressure High Pressure Bubble- and Dew-Point Data of CO ₂ with Detergent Range Alkanes and Alcohols Rheological Behavior of Nanofluids and Their Application in Emulsion Inversion under Pressure Analysis of Anthraquinone and Indigoid Colourants in Andean Textiles Using Supercritical Fluid Chromatography Extraction of Triglycerides from Nannochloropsis sp. Using Supercritical CO ₂ as Solvent Binary Phase Equilibrium, Density and Viscosity Measurement of 100 cSt and 200 cSt Polydimethylsiloxane in CO ₂ Measurement and Modelling of Sorption and Diffusion of Supercritical CO ₂ in Synthetic- and Natural-Based Polymers Phase Behavior for the 2-(trimethylsilyloxy)ethyl methacrylate and 3-(trimethoxysilyl)propyl Methacrylate in Supercritical CO ₂ at Various Temperatures and Pressures Up to 20 MPa Liquid-Vapor Equilibrium Data, Density and other Volumetric Properties of Carbon Dioxide + Acrylic Acid Binary Mixtures at High Pressure Optimization of Supercritical Water Oxidation Process Using Aspen Plus® The Parameters That Affect the Supercritical Extraction of TCA from Cork The Influence of Water on the Solubility of Carbon Dioxide in Ionic Liquids Modelling Nucleation and Cell Size During the Continuous Process of Extrusion Assisted by Supercritical CO ₂ Thermodynamic Modeling of Fennel (Foeniculum vulgar mill) and Argan (Argania spinosa I) Essential Oils Solubility in Supercritical Carbon Dioxide Supercritical Extraction from Natural Products	
PR04 Theoremotynamic Characterization of Protomated Ionic Lugids to Be Used as Artificial Oxygen Carriers PR05 Theoremotynamic Characterization of Principation Bonding from Ambient to Supercritical Conditions PR06 Simulation of Precipitation Phenomena in Supercritical Fluids Processes PR07 Liquid-Vapor Equilibrium Data, Density and Other Volumetric Properties of Carbon Dioxide + Acrylic Acid Binary Matures at High Presure PR08 High Presure Bubles and Deve Point Data of CO ₂ with Detergent Range Alkanes and Alcohols PR09 Reological Behavior of Nanofiluids and Their Application in Emulsion Inversion under Presure PR10 Analysis of Anthraquinone and Indigat Colourants in Andean Textilles Using Supercritical Huid Chromatography PR11 Extraction of Triglycerides from Nanochloropsis sp. Using Supercritical Col as Solvent PR12 Binary Phase Equilibrium Deta, Density and Oticosity Measurement of 100 CSt and 200 CSt Polydimethylsiloxane in PR13 Measurement and Modelling of Sorption and Diffusion of Supercritical Col as Solvent PR14 Phase Behavior for the 2-(trimethylsiloyaylethyl methacrylate and 3-(trimethoxsil/lylprocpl Methacrylate in Supercritical Col, at Various Temperatures and Pressures Usi to 20 MPa PR15 Liquid Vapor Equilibrium Data, Density and Other Volumetric Properties of Carbon Dioxide + Acrylic Acid Binary Matures at High Pressure PR14	 Modeling of High Pressure Phase Equilibrium Co/Ethyl Acetate/PLGA Modeling of High Pressure Phase Equilibrium Co/Ethyl Acetate/PLGA High Pressure High Pressure High Pressure Babble and Duer Volumetic Properties of Carbon Dioxide + Acrylic Acid Binary Mictures at High Pressure High Pressure<td>PK03 PK04 PK05 PK06 PK07 PK08 PK09 PK10 PK11 PK12 PK13 PK14 PK15 PK16 PK19 PK20 PK21 PK23 PK24 PK25 PK28 PK28 PK28 PK30 PK31 PK33 PK34 PK35 PK34</td><td>Modeling of High Pressure Phase Equilibrium CO2/Ethyl Acetate/PLGA Thermodynamic Characterization of Fluorinated Ionic Liquids to Be Used as Artificial Oxygen Carriers Insights Into the Evolution of Hydrogen Bonding from Ambient to Supercritical Conditions Simulation of Precipitation Phenomena in Supercritical Fluids Processes Liquid-Vapor Equilibrium Data, Density and Other Volumetric Properties of Carbon Dioxide + Acrylic Acid Binary Mixtures at High Pressure High Pressure Bubble- and Dew-Point Data of CO2 with Detergent Range Alkanes and Alcohols Rheological Behavior of Nanofluids and Their Application in Emulsion Inversion under Pressure Analysis of Anthraquinone and Indigoid Colourants in Andean Textiles Using Supercritical Fluid Chromatography Extraction of Triglycerides from Nannochloropsis sp. Using Supercritical CO2 as Solvent Binary Phase Equilibrium, Density and Viscosity Measurement of 100 CSt and 200 CSt Polydimethylsiloxane in CO2 Measurement and Modelling of Sorption and Diffusion of Supercritical CO2 in Synthetic- and Natural-Based Polymers Phase Behavior for the 2-(trimethylsilyloxy)ethyl methacrylate and 3-(trimethoxysilyl)propyl Methacrylate in Supercritical CO2 at Various Temperatures and Pressures Up to 20 MPa Liquid-Vapor Equilibrium Data, Density and other Volumetric Properties of Carbon Dioxide + Acrylic Acid Binary Mixtures at High Pressure Optimization of Supercritical Wate</td><td></td>	PK03 PK04 PK05 PK06 PK07 PK08 PK09 PK10 PK11 PK12 PK13 PK14 PK15 PK16 PK19 PK20 PK21 PK23 PK24 PK25 PK28 PK28 PK28 PK30 PK31 PK33 PK34 PK35 PK34	Modeling of High Pressure Phase Equilibrium CO2/Ethyl Acetate/PLGA Thermodynamic Characterization of Fluorinated Ionic Liquids to Be Used as Artificial Oxygen Carriers Insights Into the Evolution of Hydrogen Bonding from Ambient to Supercritical Conditions Simulation of Precipitation Phenomena in Supercritical Fluids Processes Liquid-Vapor Equilibrium Data, Density and Other Volumetric Properties of Carbon Dioxide + Acrylic Acid Binary Mixtures at High Pressure High Pressure Bubble- and Dew-Point Data of CO2 with Detergent Range Alkanes and Alcohols Rheological Behavior of Nanofluids and Their Application in Emulsion Inversion under Pressure Analysis of Anthraquinone and Indigoid Colourants in Andean Textiles Using Supercritical Fluid Chromatography Extraction of Triglycerides from Nannochloropsis sp. Using Supercritical CO2 as Solvent Binary Phase Equilibrium, Density and Viscosity Measurement of 100 CSt and 200 CSt Polydimethylsiloxane in CO2 Measurement and Modelling of Sorption and Diffusion of Supercritical CO2 in Synthetic- and Natural-Based Polymers Phase Behavior for the 2-(trimethylsilyloxy)ethyl methacrylate and 3-(trimethoxysilyl)propyl Methacrylate in Supercritical CO2 at Various Temperatures and Pressures Up to 20 MPa Liquid-Vapor Equilibrium Data, Density and other Volumetric Properties of Carbon Dioxide + Acrylic Acid Binary Mixtures at High Pressure Optimization of Supercritical Wate	
PROD Thermodynamic Characterization of Fluorinated Ionic Liquids to Be Used as Artificial Oxygen Carriers PROS Insight Into the Evolution of Hydrogen Bonding from Ambient to Supercritical Conditions PROS Liquid-Vapor Equilibrium Dhenomena in Supercritical Fluids Processes PROP Liquid-Vapor Equilibrium Dhenomena in Supercritical Fluids Processes PROP Relogical Behavior of Nanofluids and Their Application in Emulsion Inversion under Pressure PROP Relogical Behavior of Nanofluids and Their Application in Emulsion Inversion under Pressure PRO1 Analysis of Anthraquinone and Indigid Colourants in Andean Textilis Using Supercritical Co. 2 os Solvent PR11 Extraction of Traigvendes from Nanoncolfroopsiss pp. Using Supercritical Co. 2 os Solvent PR12 Binary Phase Equilibrium, Density and Viscosity Measurement of 100 cSt and 200 cSt Polydimethylsiloxane in Co. Co. Relation of Supercritical Co. 2 thraious Temperatures and Pressures Up to 20 MPA PR14 Phase Behavior for the 2-(trimethylsilyloxylethyl methacrylate and 3-(trimethoxyliyl)propyl Methacrylate in Supercritical Co. PR14 Phase Behavior for the 2-(trimethylsilyloxylethyl methacrylate and 3-(trimethoxyliyl)propyl Methacrylate in Supercritical Co. PR14 Optimization of Supercritical Water Oxidation Process Using Aspen Plus* PR15 Optimization of Supercriti	No.4 Thermodynamic Characterization of Fluorinated Ionic Liquids to Be Used as Artificial Doxgen Carriers. No.5 Insights into the Evolution of Hydrogen Bonding from Ambient to Supercritical Evolutions. No.6 Simulation of Precipitation Phenomena in Supercritical Fluids Processes Nitures at High Pressure No.5 Nitures at High Pressure Anonfluids and Their Application in Emulsion Inversion under Pressure. No.0002013 Behavior of Nanofluids and Their Application in Emulsion Inversion under Pressure. April Nation of Triglycerides from Nanochloroppis sp. Using Supercritical CO ₂ as Solvent April Nation of Triglycerides from Nanochloroppis sp. Using Supercritical CO ₂ in Synthetic- and Natural-Based Polymers. April Nation of Supercritical Vaster Oxidation Process Using Aspen Plus? National Solution of Supercritical CO ₂ in Synthetic- and Natural-Based Polymers. Nation of Supercritical Vaster Oxidation Process Using Aspen Plus? National Solution of Supercritical CO ₂ . Notal Research Tast Affect the Supercritical CO from Cork The Parameters Thast Affect the Supercritical CO ₄ from Solution Process Using Aspen Plus? Notal Research Tast Affect the Supercritical CO ₄ from Cork on Natural Products: Phase Equilibrium Study of the Ternary System Co ₂ + H2O + Ethnoid at Elevated Pressure No.6 Solution of Supercritical Cocon Dioxide Coress Using Aspen Plus?	PK04 PK05 PK06 PK07 PK07 PK07 PK07 PK07 PK07 PK07 PK09 PK10 PK10 PK11 PK12 PK13 PK14 PK14 PK15 PK16 PK19 PK20 PK21 PK23 PK25 PK23 PK26 PK28 PK29 PK30 PK31 PK32 PK33 PK34 PK35 PK01	Thermodynamic Characterization of Fluorinated Ionic Liquids to Be Used as Artificial Oxygen Carriers Insights Into the Evolution of Hydrogen Bonding from Ambient to Supercritical Conditions Simulation of Precipitation Phenomena in Supercritical Fluids Processes Liquid-Vapor Equilibrium Data, Density and Other Volumetric Properties of Carbon Dioxide + Acrylic Acid Binary Mixtures at High Pressure High Pressure Bubble- and Dew-Point Data of CO2 with Detergent Range Alkanes and Alcohols Rheological Behavior of Nanofluids and Their Application in Emulsion Inversion under Pressure Analysis of Anthraquinone and Indigoid Colourants in Andean Textiles Using Supercritical Fluid Chromatography Extraction of Triglycerides from Nannochloropsis sp. Using Supercritical CO2 as Solvent Binary Phase Equilibrium, Density and Viscosity Measurement of 100 cSt and 200 cSt Polydimethylsiloxane in CO2 Measurement and Modelling of Sorption and Diffusion of Supercritical CO2 in Synthetic- and Natural-Based Polymers Phase Behavior for the 2-(trimethylsilyloxy)ethyl methacrylate and 3-(trimethoxysilyl)propyl Methacrylate in Supercritical CO2 at Various Temperatures and Pressures Up to 20 MPa Liquid-Vapor Equilibrium Data, Density and other Volumetric Properties of Carbon Dioxide + Acrylic Acid Binary Mixtures at High Pressure Optimization of Supercritical Extraction of TCA from Cork The Influence of Water o	
PR05 Insjipts into the Evolution of Hydrogen Bonding from Ambient to Supercritical Conditions PR05 Simulation of Precipitation Phenomenan in Supercritical Huids Processes PR06 Hingh Pressure Bubble and Dew-Point Data of CO, with Detergent Range Alkanes and Alcohols PR08 Hingh Pressure Bubble and Dew-Point Data of CO, with Detergent Range Alkanes and Alcohols PR08 Hingh Pressure Bubble and Dew-Point Data of CO, with Detergent Range Alkanes and Alcohols PR09 Rheological Behavior of Nanofchiropsis sp. Using Supercritical CO, as Solvent PR11 Extraction of Triglycerides from Nanochloropsis sp. Using Supercritical CO, as Solvent PR12 Binary Phase Equilibrium, Density and Viscosity Measurement of 100 CSt and 200 CSt Polydimethylsiloxane in CO, PR13 Measurement and Modelling of Sorption and Diffusion of Supercritical CO, an Synthetic- and Natural-Based Polymers. PR14 Phase Behavior for the 2-trimethylsilovylshelbyl methacrylate and 3-trimetoxysilyl]propyl Methacrylate in Supercritical Vater Oxidation Process Using Aspen Plus* PR15 Liquid-Xapor Equilibrium Data, Density and Other Volumetric Properties of Carbon Dioxide + Acrylic Acid Binary Mitking as Ather the Supercritical Co-tarbot Dioxide in Ionic Liquids PR14 Phase Behavior of the Solubility of Carbon Dioxide in Ionic Liquids PR15 Deprimatation of Supercritical Extraction of TCA from Cork <td> Rights Into the Evolution of Hydrogen Bonding from Ambient to Supercritical Conditions Kild Simulation of Precipitation Phenomen in Supercritical Florid Processes Lujud-Vapor Equilibrium Dato, Density and Other Volumetric Properties of Carbon Dioxide + Acrylic Acid Binary Midtres at High Pressure Bubble and Dew-Point Data of CD, with Detergent Bange Alkanes and Alcohols Brobodgia Blohavior of Nanothubas and Their Application in Emulsion Inversion under Pressure Analysis of Anthraquinone and Indigoid Colourants in Andean Testiles Using Supercritical Fluid Chromatography April Bitary Phase Equilibrium, Density and Viscosity Measurement 100 CS 4 and 200 St Polydimethy/Sloxane in CO₂. Measurement and Modelling of Sorption and Diffusion of Supercritical CO₂ in Synthetic- and Natural-Based Polymers Lujud-Vapor Equilibrium Dato, Density and Viscosity Measurement 100 CS 4 and 200 St Polydimethy/Sloxane in CO₂. Visuga Carbon Equipitation and Diffusion of Supercritical CO₂ in Synthetic- and Natural-Based Polymers Lujud-Vapor Equipitation and Diffusion of Supercritical CO₂ in Synthetic- and Natural-Based April Resource Visuga Carbon Equipitation and Diffusion of Supercritical CO₂ in Synthetic- and Natural-Based April Resource Lujud-Vapor Equipitation and Cell Stee During the Continuous Process of Carbon Dioxide Hannol + Fish Oli Sobibility in Supercritical Carbon Dioxide Intolic Liquids Sububility in Supercritical Carbon Dioxide Intolic Liquids Studenting Attended Pressure Phase Equilibrium Study of the Ternary System Co₂ hubo Phasibility In Supercritical CO₂ hubo Phase Intolic Supulation of Supercritical Co₂ charactorization of Modelling Based-Ternary System Carbon Dioxide In the L-Ethyl-3-Methylimidazolium Family of Ionic Liquids Studenting Corphilite and Selective Extractants for Supercritical CO₂ Extraction</td> <td>PK05 PK06 PK07 PK07 PK07 PK07 PK07 PK07 PK07 PK10 PK11 PK12 PK13 PK14 PK15 PK16 PK19 PK20 PK21 PK23 PK25 PK26 PK28 PK29 PK30 PK31 PK32 PK33 PK34 PK35 PM01</td> <td>Insights Into the Evolution of Hydrogen Bonding from Ambient to Supercritical Conditions Simulation of Precipitation Phenomena in Supercritical Fluids Processes Liquid-Vapor Equilibrium Data, Density and Other Volumetric Properties of Carbon Dioxide + Acrylic Acid Binary Mixtures at High Pressure High Pressure Bubble- and Dew-Point Data of CO₂ with Detergent Range Alkanes and Alcohols Rheological Behavior of Nanofluids and Their Application in Emulsion Inversion under Pressure Analysis of Anthraquinone and Indigoid Colourants in Andean Textiles Using Supercritical Fluid Chromatography Extraction of Triglycerides from Nannochloropsis sp. Using Supercritical CO₂ as Solvent Binary Phase Equilibrium, Density and Viscosity Measurement of 100 cSt and 200 cSt Polydimethylsiloxane in CO₂ Measurement and Modelling of Sorption and Diffusion of Supercritical CO₂ in Synthetic- and Natural-Based Polymers Phase Behavior for the 2-(trimethylsilyloxy)ethyl methacrylate and 3-(trimethoxysilyl)propyl Methacrylate in Supercritical CO₂ at Various Temperatures and Pressures Up to 20 MPa Liquid-Vapor Equilibrium Data, Density and other Volumetric Properties of Carbon Dioxide + Acrylic Acid Binary Mixtures at High Pressure Optimization of Supercritical Water Oxidation Process Using Aspen Plus[®] The Parameters That Affect the Supercritical Extraction of TCA from Cork The Influence of Water on the Solubility of Carbon Dioxide in Ionic Liquids Modelling Nucleation and Cell Size During the Continuous Process of Extrusion Assisted by Supercritical CO₂ Thermodynamic Modeling of Fennel (Foeniculum vulgar mill) and Argan (Argania spinosa I) Essential Oils Solubility in Supercritical Carbon Dioxide Supercritical Extraction from Natural Products: Phase Equilibrium Study of the Ternary System CO₂ + H2O + Ethanol at Elevated Pressure High-Pressure Phase Equilibria of the Pseudo-Ternary System Carbon Dioxide + Ethanol + Fish Oil Conception of CO₂-phile and Selective Extractants for Supercritical CO₂ Extraction of Metals Extende</td> <td></td>	 Rights Into the Evolution of Hydrogen Bonding from Ambient to Supercritical Conditions Kild Simulation of Precipitation Phenomen in Supercritical Florid Processes Lujud-Vapor Equilibrium Dato, Density and Other Volumetric Properties of Carbon Dioxide + Acrylic Acid Binary Midtres at High Pressure Bubble and Dew-Point Data of CD, with Detergent Bange Alkanes and Alcohols Brobodgia Blohavior of Nanothubas and Their Application in Emulsion Inversion under Pressure Analysis of Anthraquinone and Indigoid Colourants in Andean Testiles Using Supercritical Fluid Chromatography April Bitary Phase Equilibrium, Density and Viscosity Measurement 100 CS 4 and 200 St Polydimethy/Sloxane in CO₂. Measurement and Modelling of Sorption and Diffusion of Supercritical CO₂ in Synthetic- and Natural-Based Polymers Lujud-Vapor Equilibrium Dato, Density and Viscosity Measurement 100 CS 4 and 200 St Polydimethy/Sloxane in CO₂. Visuga Carbon Equipitation and Diffusion of Supercritical CO₂ in Synthetic- and Natural-Based Polymers Lujud-Vapor Equipitation and Diffusion of Supercritical CO₂ in Synthetic- and Natural-Based April Resource Visuga Carbon Equipitation and Diffusion of Supercritical CO₂ in Synthetic- and Natural-Based April Resource Lujud-Vapor Equipitation and Cell Stee During the Continuous Process of Carbon Dioxide Hannol + Fish Oli Sobibility in Supercritical Carbon Dioxide Intolic Liquids Sububility in Supercritical Carbon Dioxide Intolic Liquids Studenting Attended Pressure Phase Equilibrium Study of the Ternary System Co₂ hubo Phasibility In Supercritical CO₂ hubo Phase Intolic Supulation of Supercritical Co₂ charactorization of Modelling Based-Ternary System Carbon Dioxide In the L-Ethyl-3-Methylimidazolium Family of Ionic Liquids Studenting Corphilite and Selective Extractants for Supercritical CO₂ Extraction	PK05 PK06 PK07 PK07 PK07 PK07 PK07 PK07 PK07 PK10 PK11 PK12 PK13 PK14 PK15 PK16 PK19 PK20 PK21 PK23 PK25 PK26 PK28 PK29 PK30 PK31 PK32 PK33 PK34 PK35 PM01	Insights Into the Evolution of Hydrogen Bonding from Ambient to Supercritical Conditions Simulation of Precipitation Phenomena in Supercritical Fluids Processes Liquid-Vapor Equilibrium Data, Density and Other Volumetric Properties of Carbon Dioxide + Acrylic Acid Binary Mixtures at High Pressure High Pressure Bubble- and Dew-Point Data of CO ₂ with Detergent Range Alkanes and Alcohols Rheological Behavior of Nanofluids and Their Application in Emulsion Inversion under Pressure Analysis of Anthraquinone and Indigoid Colourants in Andean Textiles Using Supercritical Fluid Chromatography Extraction of Triglycerides from Nannochloropsis sp. Using Supercritical CO ₂ as Solvent Binary Phase Equilibrium, Density and Viscosity Measurement of 100 cSt and 200 cSt Polydimethylsiloxane in CO ₂ Measurement and Modelling of Sorption and Diffusion of Supercritical CO ₂ in Synthetic- and Natural-Based Polymers Phase Behavior for the 2-(trimethylsilyloxy)ethyl methacrylate and 3-(trimethoxysilyl)propyl Methacrylate in Supercritical CO ₂ at Various Temperatures and Pressures Up to 20 MPa Liquid-Vapor Equilibrium Data, Density and other Volumetric Properties of Carbon Dioxide + Acrylic Acid Binary Mixtures at High Pressure Optimization of Supercritical Water Oxidation Process Using Aspen Plus [®] The Parameters That Affect the Supercritical Extraction of TCA from Cork The Influence of Water on the Solubility of Carbon Dioxide in Ionic Liquids Modelling Nucleation and Cell Size During the Continuous Process of Extrusion Assisted by Supercritical CO ₂ Thermodynamic Modeling of Fennel (Foeniculum vulgar mill) and Argan (Argania spinosa I) Essential Oils Solubility in Supercritical Carbon Dioxide Supercritical Extraction from Natural Products: Phase Equilibrium Study of the Ternary System CO ₂ + H2O + Ethanol at Elevated Pressure High-Pressure Phase Equilibria of the Pseudo-Ternary System Carbon Dioxide + Ethanol + Fish Oil Conception of CO ₂ -phile and Selective Extractants for Supercritical CO ₂ Extraction of Metals Extende	
PK05 Simulation of Precipitation Phenomena in Supercritical Huids Processes PK07 Liquid Vapor Equilibrium Data, Density and Other Volumetric Properties of Carbon Dioxide + Acrylic Acid Binary PK08 High Pressure Bubble- and Dew-Point Data of CO ₂ with Detergent Range Alkanes and Alcohols PK09 Rheological Behavior of Nanofluids and Their Application in Emulsion Inversion under Pressure PK10 Analysis of Anthraquinone and Indigoid Colourants in Andean Textlies Using Supercritical Fluid Chromotography PK11 Extraction of Trig/verides from Nanochloropsis sp. Julia Supercritical CO ₂ as Synthetic- and Natural-Based Polymers PK13 Measurement and Modelling of Sorption and Diffusion of Supercritical CO ₂ in Synthetic- and Natural-Based Polymers PK14 Phase Behavior for the 2-(trimethylsilv/loxy)ethyl methacrylate and 3-(trimethoxysilyl)propyl Methacrylate in Supercritical CO ₂ at Various Temperatures and Pressures Up to 20 MPa PK15 Liquid Vapor Equilibrium Data, Density and other Volumetric Properties of Carbon Dioxide + Acrylic Acid Binary Mixtures at High Pressure PK16 Diptimization of Supercritical Varier on the Solubility of Carbon Dioxide in Ionic Liquids PK14 The Parameters That Affect the Supercritical Cortical Cort for Cork PK16 Diptimization of Supercritical Cort Supercritical Cortical Cort The Theolence of Ware on the Solubility of Carbon Dioxide in Ionic Liquids <td< td=""><td> Simulation of Precipitation Phenomena in Supercritical Fluids Processes High Prossure High Prossure Phase Equilibria of the Pseudo-Ternary Syste</td><td>PK06 PK07 PK08 PK09 PK10 PK11 PK12 PK13 PK14 PK15 PK16 PK19 PK20 PK21 PK23 PK25 PK26 PK28 PK29 PK30 PK31 PK33 PK34 PK35 PK01</td><td>Simulation of Precipitation Phenomena in Supercritical Fluids Processes Liquid-Vapor Equilibrium Data, Density and Other Volumetric Properties of Carbon Dioxide + Acrylic Acid Binary Mixtures at High Pressure High Pressure Bubble- and Dew-Point Data of CO₂ with Detergent Range Alkanes and Alcohols Rheological Behavior of Nanofluids and Their Application in Emulsion Inversion under Pressure Analysis of Anthraquinone and Indigoid Colourants in Andean Textiles Using Supercritical Fluid Chromatography Extraction of Triglycerides from Nannochloropsis sp. Using Supercritical CO₂ as Solvent Binary Phase Equilibrium, Density and Viscosity Measurement of 100 cSt and 200 cSt Polydimethylsiloxane in CO₂ Measurement and Modelling of Sorption and Diffusion of Supercritical CO₂ in Synthetic- and Natural-Based Polymers Phase Behavior for the 2-(trimethylsilyloxy)ethyl methacrylate and 3-(trimethoxysilyl)propyl Methacrylate in Supercritical CO₂ at Various Temperatures and Pressures Up to 20 MPa Liquid-Vapor Equilibrium Data, Density and other Volumetric Properties of Carbon Dioxide + Acrylic Acid Binary Mixtures at High Pressure Optimization of Supercritical Water Oxidation Process Using Aspen Plus® The Parameters That Affect the Supercritical Extraction of TCA from Cork The Influence of Water on the Solubility of Carbon Dioxide in Ionic Liquids Modelling Nucleation and Cell Size During the Continuous Process of Extrusion Assisted by Supercritical CO₂ Thermodynamic Modeling of Fennel (Foeniculum vulgar mill) and Argan (Argania spinosa I) Essential Oils Solubility in Supercritical Carbon Dioxide Supercritical Extraction from Natural Products: Phase Equilibrium Study of the Ternary System CO₂ + H2O + Ethanol at Elevated Pressure High-Pressure Phase Equilibria of the Pseudo-Ternary System Carbon Dioxide + Ethanol + Fish Oil Conception of CO₂-phile and Selective Extractants for Supercritical CO₂ Extraction of Metals Extended Correlation to Predict High Pressure Solubility of Carbon Dioxid</td><td></td></td<>	 Simulation of Precipitation Phenomena in Supercritical Fluids Processes High Prossure High Prossure Phase Equilibria of the Pseudo-Ternary Syste	PK06 PK07 PK08 PK09 PK10 PK11 PK12 PK13 PK14 PK15 PK16 PK19 PK20 PK21 PK23 PK25 PK26 PK28 PK29 PK30 PK31 PK33 PK34 PK35 PK01	Simulation of Precipitation Phenomena in Supercritical Fluids Processes Liquid-Vapor Equilibrium Data, Density and Other Volumetric Properties of Carbon Dioxide + Acrylic Acid Binary Mixtures at High Pressure High Pressure Bubble- and Dew-Point Data of CO ₂ with Detergent Range Alkanes and Alcohols Rheological Behavior of Nanofluids and Their Application in Emulsion Inversion under Pressure Analysis of Anthraquinone and Indigoid Colourants in Andean Textiles Using Supercritical Fluid Chromatography Extraction of Triglycerides from Nannochloropsis sp. Using Supercritical CO ₂ as Solvent Binary Phase Equilibrium, Density and Viscosity Measurement of 100 cSt and 200 cSt Polydimethylsiloxane in CO ₂ Measurement and Modelling of Sorption and Diffusion of Supercritical CO ₂ in Synthetic- and Natural-Based Polymers Phase Behavior for the 2-(trimethylsilyloxy)ethyl methacrylate and 3-(trimethoxysilyl)propyl Methacrylate in Supercritical CO ₂ at Various Temperatures and Pressures Up to 20 MPa Liquid-Vapor Equilibrium Data, Density and other Volumetric Properties of Carbon Dioxide + Acrylic Acid Binary Mixtures at High Pressure Optimization of Supercritical Water Oxidation Process Using Aspen Plus® The Parameters That Affect the Supercritical Extraction of TCA from Cork The Influence of Water on the Solubility of Carbon Dioxide in Ionic Liquids Modelling Nucleation and Cell Size During the Continuous Process of Extrusion Assisted by Supercritical CO ₂ Thermodynamic Modeling of Fennel (Foeniculum vulgar mill) and Argan (Argania spinosa I) Essential Oils Solubility in Supercritical Carbon Dioxide Supercritical Extraction from Natural Products: Phase Equilibrium Study of the Ternary System CO ₂ + H2O + Ethanol at Elevated Pressure High-Pressure Phase Equilibria of the Pseudo-Ternary System Carbon Dioxide + Ethanol + Fish Oil Conception of CO ₂ -phile and Selective Extractants for Supercritical CO ₂ Extraction of Metals Extended Correlation to Predict High Pressure Solubility of Carbon Dioxid	
PR07 Liquid Vapor Equilibrium Data, Density and Other Volumetric Properties of Carbon Dioxide + Acrylic Acid Binary Mixtures at High Pressure PK08 High Pressure Bubble- and Dew-Point Data of CO ₂ with Detergent Range Alkanes and Alcohols PK08 High Pressure Bubble- and Dew-Point Data of CO ₂ with Detergent Range Alkanes and Alcohols PK09 Anayiso of Anthraquinone and Indigio Colourants in Andean Textiles Using Supercritical Full Chromatography PK11 Extraction of Triglycerides from Nannochloropsis sp. Using Supercritical CO ₂ as Solvent PK12 Binary Phase Equilibrium, Density and Viscosity Measurement of 100 CSt and 200 CSt Polydimethylsiloxane in CO ₂ . PK13 Measurement and Modelling of Sorption and Diffusion of Supercritical CO ₂ in Synthetic- and Natural-Based Polymers. PK14 Phase Behavior for the 2-(trimethylsilyloxylethyl methacrylate and 3-(trimethoxysilyl)propyl Methacrylate in Supercritical CO ₂ at Various Temperatures and Pressures Up to 20 MPa PK16 Optimization of Supercritical Extraction of TCA from Cork PK17 The Parameters Thatfet: the Supercritical Extraction of Ton Cork PK18 The Influence of Water on the Solubility of Carbon Dioxide Intonic Liquids PK10 The Parameters Thatfet: the Solubility of Carbon Dioxide Intonic Liquids PK12 Supercritical Carbon Dioxide Estruston Assited by Supercritical CO ₂ .<	 (k07) Lupid-Vapor Equilibrium Data, Density and Other Volumetric Properties of Carbon Dioxide + Acrylic Acid Binary Mixtures at High Pressure (K08) Bheological Behavior of Nanofhuids and Their Application in Emulsion Inversion under Pressure (K10) Analysis of Anthraquinone and Indigiol Colourants in Andean Textiles Using Supercritical Fluid Chromatography April (K11) Estrary Phase Equilibrium, Density and Viceosity Measurement of 130 CSt and 200 CSt Polydimethylsiloxane in CO, (K12) Binary Phase Equilibrium, Density and Viceosity Measurement of 130 CSt and 200 CSt Polydimethylsiloxane in CO, (K24) Phase Behavior for the 2-(trimethylsilyloxylethyl methacrylate and 3-(trimethoxysilyl)propyl Methacrylate in Supercritical CO at Various Temperatures and Pressures Up to 20 MPa (K12) Lupid-Vapor Equilibrium of Data, Density and Other Volumetric Properties of Carbon Dioxide + Acrylic Acid Binary Mixtures at High Pressure (K12) Usid-Vapor Equilibrium Data, Density and Other Volumetric Properties of Carbon Dioxide + Acrylic Acid Binary Mixtures at High Pressure (K13) The Influence of Water on the Solubility of Carbon Dioxide in Ionic Liquids (K14) The Influence of Vater on the Solubility of Carbon Dioxide in Ionic Liquids (K16) Uptimization of Supercritical Vater Contex Stress of Extraol Stress of Stresson Assisted by Supercritical CO; (K17) The Influence of Water on the Solubility of Carbon Dioxide + Ethanol + Fish Oil (K26) Supercritical Vater Conton Dioxide Pressure Solubility of Carbon Dioxide + Ethanol + Fish Oil (K26) Conception of CO-phile Besue Carbon Dioxide resure (K27) Modeling Nucleation to Predict High Pressure System Carbon Dioxide + Ethanol + Fish Oil (K26) Conception of Supercritical Corbon Dioxide in the 1-Ethyl-3-Methylimidazolum Family Behaviour of the Ternary System (K26) Different Io	PK07 PK08 PK09 PK10 PK11 PK11 PK12 PK13 PK14 PK15 PK15 PK16 PK17 PK18 PK19 PK20 PK21 PK23 PK25 PK28 PK26 PK28 PK28 PK29 PK30 PK31 PK33 PK34 PK35 PK01	Liquid-Vapor Equilibrium Data, Density and Other Volumetric Properties of Carbon Dioxide + Acrylic Acid Binary Mixtures at High Pressure High Pressure Bubble- and Dew-Point Data of CO ₂ with Detergent Range Alkanes and Alcohols Rheological Behavior of Nanofluids and Their Application in Emulsion Inversion under Pressure Analysis of Anthraquinone and Indigoid Colourants in Andean Textiles Using Supercritical Fluid Chromatography Extraction of Triglycerides from Nannochloropsis sp. Using Supercritical CO ₂ as Solvent Binary Phase Equilibrium, Density and Viscosity Measurement of 100 cSt and 200 cSt Polydimethylsiloxane in CO ₂ Measurement and Modelling of Sorption and Diffusion of Supercritical CO ₂ in Synthetic- and Natural-Based Polymers Phase Behavior for the 2-(trimethylsilyloxy)ethyl methacrylate and 3-(trimethoxysilyl)propyl Methacrylate in Supercritical CO ₂ at Various Temperatures and Pressures Up to 20 MPa Liquid-Vapor Equilibrium Data, Density and other Volumetric Properties of Carbon Dioxide + Acrylic Acid Binary Mixtures at High Pressure Optimization of Supercritical Water Oxidation Process Using Aspen Plus [®] The Parameters That Affect the Supercritical Extraction of TCA from Cork The Influence of Water on the Solubility of Carbon Dioxide in Ionic Liquids Modelling Nucleation and Cell Size During the Continuous Process of Extrusion Assisted by Supercritical CO ₂ Thermodynamic Modeling of Fennel (Foeniculum vulgar mill) and Argan (Argania spinosa I) Essential Oils Solubility in Supercritical Carbon Dioxide Supercritical Extraction from Natural Products: Phase Equilibrium Study of the Ternary System CO ₂ + H2O + Ethanol at Elevated Pressure High-Pressure Phase Equilibria of the Pseudo-Ternary System Carbon Dioxide + Ethanol + Fish Oil Conception of CO ₂ -phile and Selective Extractants for Supercritical CO ₂ Extraction of Metals Extended Correlation to Predict High Pressure Solubility of Carbon Dioxide in the 1-Ethyl-3-Methylimidazolium	
Mixtures at High Pressure PK08 High Pressure Bubble and Dew-Point Data of CO: with Detergent Range Alkanes and Alcohols PK09 Rheological Behavior of Nanofiluids and Their Application in Enulision Inversion under Pressure PK11 Extraction of Trig/cycleds from Nanochloropsis sp. Using Supercritical CO: as Solvent PK12 Binary Phase Equilibrium, Density and Viscosity Measurement of 100 CSt and 200 CSt Polydimethylsiloxane in CO. PK14 Measurement and Modelling of Sorption and Diffusion of Supercritical CO: an Synthetic- and Natural-Based Polymers. PK14 Phase Behavior for the 2-(trimethylsil/lovylethyl methacrylate and 3-(trimethoxysil/l)propyl Methacrylate in Supercritical CO: at Various Temperatures Up to 20 MPa PK14 Phase Behavior for the 2-Dirimethylsil/lovylethyl methacrylate and 3-(trimethoxysil/l)propyl Methacrylate in Supercritical Various Temperatures Up to 20 MPa PK15 Liquid-Vapor Equilibrium Data, Density and other Volumetric Properties of Carbon Dioxide + Acrylic Acid Binary Mixtures at High Pressure PK16 Optimization of Supercritical Varier on the Soubility of Carbon Dioxide in Ionic Liquids PK11 The Parameters That Affect the Supercritical Coundocide in Ionic Liquids PK20 Modelling of Fornor Natural Products: Phase Equilibrium Study of the Ternary System Co: + H20 + Ethanol at Elevated Pressure PK21 High-Pressure Phase Equilibrium Study of the Ternary System	Mixtures at High Pressure 24% Wigh Exercise Bubble- and Dew-Point Data of CO, with Detergent Range Alkanes and Akcohols 24% K09 Bheological Behavior of Nanofluids and Their Application in Emulison Intervision under Pressure 26% K10 Analysis of Anthraquinone and Indigoid Colourants in Andean Textiles Using Supercritical CO: as Solvent April K12 Extraction of Triglycerides from Nanochioropsis pp. Using Supercritical CO: as Solvent April K12 Binary Phase Equilibrium, Density and Viscosity Messurement of 100 CS and 200 CSt Polydimethylislowa April K12 Diparce Texture Diparce Texture April K14 Phase Behavior for the 2-triinethylsilyloxylethyl methacrylate and 3-triinethysilylpropyl Methacrylate in Supercritical CO: at Yanote Exercision Assisted by Supercritical CO: Texture Modeling of Sone Pressure K14 Phase Behavior for the 2-triinethylsilyloxylethyl methacrylate and 3-triinethylsilyloxylethyl methacrylate in Onici Uguids Sone Pressure K15 Uptimization of Supercritical Water Oxidation Process Using Appen Plus ^a The Pranewers That Affect Bub Supercritical Exerction of Text from Cork K16 Optimization of Supercritical Water Oxidation Process Using Appen Plus ^a Supercritical Cort Text Text Text Text Text Text Text Tex	PK08 PK09 PK10 PK11 PK12 PK13 PK14 PK15 PK16 PK19 PK20 PK21 PK22 PK23 PK26 PK28 PK28 PK28 PK28 PK28 PK28 PK28 PK28 PK28 PK29 PK30 PK31 PK33 PK34 PK35	Mixtures at High Pressure High Pressure Bubble- and Dew-Point Data of CO ₂ with Detergent Range Alkanes and Alcohols Rheological Behavior of Nanofluids and Their Application in Emulsion Inversion under Pressure Analysis of Anthraquinone and Indigoid Colourants in Andean Textiles Using Supercritical Fluid Chromatography Extraction of Triglycerides from Nannochloropsis sp. Using Supercritical CO ₂ as Solvent Binary Phase Equilibrium, Density and Viscosity Measurement of 100 cSt and 200 cSt Polydimethylsiloxane in CO ₂ Measurement and Modelling of Sorption and Diffusion of Supercritical CO ₂ in Synthetic- and Natural-Based Polymers Phase Behavior for the 2-(trimethylsilyloxy)ethyl methacrylate and 3-(trimethoxysilyl)propyl Methacrylate in Supercritical CO ₂ at Various Temperatures and Pressures Up to 20 MPa Liquid-Vapor Equilibrium Data, Density and other Volumetric Properties of Carbon Dioxide + Acrylic Acid Binary Mixtures at High Pressure Optimization of Supercritical Water Oxidation Process Using Aspen Plus® The Parameters That Affect the Supercritical Extraction of TCA from Cork The Influence of Water on the Solubility of Carbon Dioxide in Ionic Liquids Modelling Nucleation and Cell Size During the Continuous Process of Extrusion Assisted by Supercritical CO ₂ Thermodynamic Modeling of Fennel (Foeniculum vulgar mill) and Argan (Argania spinosa I) Essential Oils Solubility in Supercritical Extraction from Natural Products: Phase Equilibrium Study of the Ternary System CO ₂ + H2O + Ethanol at Elevated Pressure High-Pressure Phase Equilibria of the Pseudo-Ternary System Carbon Dioxide + Ethanol + Fish Oil Conception of CO ₂ -phile and Selective Extractants for Supercritical CO ₂ Extraction of Metals Extended Correlation to Predict High Pressure Solubility of Carbon Dioxide in the 1-Ethyl-3-Methylimidazolium	
PK09 Rheological Behavior of Nanofhuids and Their Application in Emulsion Inversion under Pressure PK10 Analysis of Anthraquinone and Indigoid Colourants in Andean Textiles Using Supercritical Fluid Chromatography PK11 Extraction of Triglycerides from Nanochloropsis sp. Using Supercritical CO ₂ as Solvent PK11 Binary Phase Equilibrium, Density and Viscosity Measurement of 100 CSt and 200 CSt Polydimethylsiloxane in CO ₂ Measurement and Modelling of Sorption and Diffusion of Supercritical CO ₂ in Synthetic- and Natural-Based PK14 Phase Behavior for the 2-(trimethylsilyloxylethyl methacrylate and 3-(trimethoxysilyl)propyl Methacrylate in Supercritical QLO at Various Temperatures and Pressures Up to 20 MPa Supercritical Quarter Colonal Colonal Process Using Aspen Plus* PK16 Optimization of Supercritical Water Oxidation Process Using Aspen Plus* Pk17 PK12 The Parameters That Affect the Supercritical Extraction of TCA from Cork PK18 PK19 Modelling Nucleation and Cell Sze During the Continuous Process of Extrusion Assisted by Supercritical CO ₂ PK19 Supercritical Extraction from Natural Products: Phase Equilibrium Study of the Ternary System CO ₂ + H20 + Ethanol at Elevated Pressure PK22 High-Pressure Phase Equilibria of the Pseudo-Ternary System Carbon Dioxide in the 1-Ethyl-3-Methylimidazolium Family of Ionic Liquids PK22	K09 Rheological Behavior of Nanofluids and Their Application in Ternulsion Inversion under Pressure 26 th K10 Analysis of Anthraquione and Indigiod Colourants in Andema Textiles Using Supercritical CD ₂ as Solvent 26 th K11 Extraction of Trighycerides from Nannochloropsis sp. Using Supercritical CD ₂ as Solvent April K12 Binary Phase Equilibrium, Density and Viscosity Measurement of 100 CSt and 200 CSt Polydimethylisioxane in CD ₂ . April K13 Measurement and Modelling of Sorption and Diffusion of Supercritical CD ₂ in Synthetic- and Natural-Based Polymers Phase Behavior for the 2-(trimethylisilyloxylethyl methacrylate and 3-(trimethoxysilyl)propyl Methacrylate in Supercritical CO ₂ . Supercritical CO ₂ at Various Temperatures and Pressures to the 20 MPa K14 Phase Behavior for the 2-(trimethylisilyloxylethyl methacrylate and 3-(trimethoxysilyl)propyl Methacrylate in Supercritical CO ₂ to Various Temperatures and Pressures to TeX from Onk K14 K15 Liquid-Vapor Equilibrium Data, Density and other Volumetric Properties of Carbon Dioxide by Supercritical CO ₂ . Modelling Nucleation and Cell Size During the Continuous Process of Extrusion Assited by Supercritical CO ₂ . K15 Modelling Variantic Modelling of Fonell (Folencilum vugar mill) and Argan (Argania Spinosa I) Essential Oils Solubility in Supercritical Carbon Dioxide regulation model to Polymethane Membrane with Borage Oil From Pariny System CO ₂ phile and Selective Extractants for Supercritical CO ₂ Extraction of Me	PK09 PK10 PK11 PK12 PK13 PK14 PK15 PK16 PK17 PK18 PK19 PK20 PK21 PK22 PK23 PK26 PK28 PK28 PK28 PK29 PK30 PK31 PK33 PK34 PK35	Rheological Behavior of Nanofluids and Their Application in Emulsion Inversion under Pressure Analysis of Anthraquinone and Indigoid Colourants in Andean Textiles Using Supercritical Fluid Chromatography Extraction of Triglycerides from Nannochloropsis sp. Using Supercritical CO2 as Solvent Binary Phase Equilibrium, Density and Viscosity Measurement of 100 cSt and 200 cSt Polydimethylsiloxane in CO2 Measurement and Modelling of Sorption and Diffusion of Supercritical CO2 in Synthetic- and Natural-Based Polymers Phase Behavior for the 2-(trimethylsilyloxy)ethyl methacrylate and 3-(trimethoxysilyl)propyl Methacrylate in Supercritical CO2 at Various Temperatures and Pressures Up to 20 MPa Liquid-Vapor Equilibrium Data, Density and other Volumetric Properties of Carbon Dioxide + Acrylic Acid Binary Mixtures at High Pressure Optimization of Supercritical Water Oxidation Process Using Aspen Plus® The Parameters That Affect the Supercritical Extraction of TCA from Cork The Influence of Water on the Solubility of Carbon Dioxide in Ionic Liquids Modelling Nucleation and Cell Size During the Continuous Process of Extrusion Assisted by Supercritical CO2 Thermodynamic Modeling of Fennel (Foeniculum vulgar mill) and Argan (Argania spinosa I) Essential Oils Solubility in Supercritical Carbon Dioxide Solubility in Supercritical Carbon Dioxide Modelling Nucleation and Cell Size During the Continuous Process of Extrusion Assisted by Supercritical CO2 Thermodynamic Modeling of Fennel (Foeniculum vulgar mill) and Argan (Argania spin	
PK10 Analysis of Anthraquinone and Indigid Colourants in Andean Textiles Using Supercritical Fluid Chromatography PK12 Binary Phase Equilibrium, Density and Viscosity Measurement of 100 CSt and 200 CSt Polydimethylsiloxane in CO. PK13 Measurement and Modelling of Sorption and Diffusion of Supercritical CO.: in Synthetic- and Natural-Based Polymers PK14 Phase Behavior for the 2-(triimethylsilydoxylethyl methacrylate and 3-(triimethoxysilyl)propyl Methacrylate in Supercritical CO.: at Various Temperatures and Pressures Up to 20 MPa. PK15 Liquid-Yapor Equilibrium Data, Density and other Volumetric Properties of Carbon Dioxide + Acrylic Acid Binary Mixtures at High Pressure PK16 Optimization of Supercritical Water Oxidation Process Using Aspen Plus* PK17 The Parameters That Affect the Supercritical Carbon Dioxide in Ionic Liquids PK18 Modelling Nucleation and Cell Size During the Continuous Process of Extrusion Assisted by Supercritical CO. PK10 The Influence of Water on the Solubility of Carbon Dioxide in Ionic Liquids PK12 Solubility in Supercritical Carbon Dioxide PK13 Solubility in Supercritical Carbon Dioxide PK24 Kiph-Pressure Phase Equilibria of the Pseudo-Ternary System Carbon Dioxide + Ethanol + Fish Oll PK25 Extraction of Co-philie and Selective Extractants for Supercritical CO: Extraction of Metals PK26 <td>K10 Analysis of Anthraquinone and Indigoid Colourants in Andean Testiles Using Supercritical Co. as Solvent 26th K11 Extraction of Triglycendes from Nanochloropsis sp. Using Supercritical Co. as Solvent Aprill K12 Binary Phase Equilibrium, Density and Viscosity Measurement of 100 cSt and 200 cSt Polydimethylsiloxane in Co. K13 Measurement and Modelling of Sorption and Diffusion of Supercritical Co. in Synthetic- and Natural-Based Polymers K14 Phase Behavior for the 2-(trimethylsilyloxylethyl methacrylate and 3-(trimethoxysilyl)propyl Methacrylate in Supercritical Co. K15 Liquid-Vapor Equilibrium Data, Density and other Volumetric Properties of Carbon Dioxide + Acrylic Acid Binary Mixtures at High Pressure K16 Optimization of Supercritical Water Oxidation Process Using Aspen Plus[®] K17 The Parameters That Affect the Supercritical Extraction of TCA from Cork K18 The Influence of Water on the Solubility of Carbon Dioxide in Ionic Liquids K19 The strameters That Affect the Supercritical Extraction of TCA from Cork K18 The Influence of Water on the Solubility of Carbon Dioxide in Ionic Liquids K19 Modelling Nucleation and Cell Size During the Continuous Process of Extraction of Metal K10 The many System Co. High Prossure Phase Equilibrian O Iouxide K21</td> <td>PK10 PK11 PK11 PK12 PK12 PK13 PK14 PK15 PK16 PK17 PK18 PK19 PK20 PK21 PK22 PK23 PK25 PK26 PK28 PK28 PK29 PK30 PK31 PK32 PK33 PK34 PK35 PM01</td> <td>Analysis of Anthraquinone and Indigoid Colourants in Andean Textiles Using Supercritical Fluid Chromatography Extraction of Triglycerides from Nannochloropsis sp. Using Supercritical CO₂ as Solvent Binary Phase Equilibrium, Density and Viscosity Measurement of 100 cSt and 200 cSt Polydimethylsiloxane in CO₂ Measurement and Modelling of Sorption and Diffusion of Supercritical CO₂ in Synthetic- and Natural-Based Polymers Phase Behavior for the 2-(trimethylsilyloxy)ethyl methacrylate and 3-(trimethoxysilyl)propyl Methacrylate in Supercritical CO₂ at Various Temperatures and Pressures Up to 20 MPa Liquid-Vapor Equilibrium Data, Density and other Volumetric Properties of Carbon Dioxide + Acrylic Acid Binary Mixtures at High Pressure Optimization of Supercritical Water Oxidation Process Using Aspen Plus[®] The Parameters That Affect the Supercritical Extraction of TCA from Cork The Influence of Water on the Solubility of Carbon Dioxide in Ionic Liquids Modelling Nucleation and Cell Size During the Continuous Process of Extrusion Assisted by Supercritical CO₂ Thermodynamic Modeling of Fennel (Foeniculum vulgar mill) and Argan (Argania spinosa I) Essential Oils Solubility in Supercritical Carbon Dioxide Supercritical Extraction for Matural Products: Phase Equilibrium Study of the Ternary System CO₂ + H2O + Ethanol at Elevated Pressure High-Pressure Phase Equilibria of the Pseudo-Ternary System Carbon Dioxide + Ethanol + Fish Oil Conception of CO₂-phile and Selective Extractants for Supercritical CO₂ Extraction of Metals Extended Correlation to Predict High Pressure Solubility of Carbon Dioxide in the 1-Ethyl-3-Methylimidazolium</td> <td></td>	K10 Analysis of Anthraquinone and Indigoid Colourants in Andean Testiles Using Supercritical Co. as Solvent 26 th K11 Extraction of Triglycendes from Nanochloropsis sp. Using Supercritical Co. as Solvent Aprill K12 Binary Phase Equilibrium, Density and Viscosity Measurement of 100 cSt and 200 cSt Polydimethylsiloxane in Co. K13 Measurement and Modelling of Sorption and Diffusion of Supercritical Co. in Synthetic- and Natural-Based Polymers K14 Phase Behavior for the 2-(trimethylsilyloxylethyl methacrylate and 3-(trimethoxysilyl)propyl Methacrylate in Supercritical Co. K15 Liquid-Vapor Equilibrium Data, Density and other Volumetric Properties of Carbon Dioxide + Acrylic Acid Binary Mixtures at High Pressure K16 Optimization of Supercritical Water Oxidation Process Using Aspen Plus [®] K17 The Parameters That Affect the Supercritical Extraction of TCA from Cork K18 The Influence of Water on the Solubility of Carbon Dioxide in Ionic Liquids K19 The strameters That Affect the Supercritical Extraction of TCA from Cork K18 The Influence of Water on the Solubility of Carbon Dioxide in Ionic Liquids K19 Modelling Nucleation and Cell Size During the Continuous Process of Extraction of Metal K10 The many System Co. High Prossure Phase Equilibrian O Iouxide K21	PK10 PK11 PK11 PK12 PK12 PK13 PK14 PK15 PK16 PK17 PK18 PK19 PK20 PK21 PK22 PK23 PK25 PK26 PK28 PK28 PK29 PK30 PK31 PK32 PK33 PK34 PK35 PM01	Analysis of Anthraquinone and Indigoid Colourants in Andean Textiles Using Supercritical Fluid Chromatography Extraction of Triglycerides from Nannochloropsis sp. Using Supercritical CO ₂ as Solvent Binary Phase Equilibrium, Density and Viscosity Measurement of 100 cSt and 200 cSt Polydimethylsiloxane in CO ₂ Measurement and Modelling of Sorption and Diffusion of Supercritical CO ₂ in Synthetic- and Natural-Based Polymers Phase Behavior for the 2-(trimethylsilyloxy)ethyl methacrylate and 3-(trimethoxysilyl)propyl Methacrylate in Supercritical CO ₂ at Various Temperatures and Pressures Up to 20 MPa Liquid-Vapor Equilibrium Data, Density and other Volumetric Properties of Carbon Dioxide + Acrylic Acid Binary Mixtures at High Pressure Optimization of Supercritical Water Oxidation Process Using Aspen Plus [®] The Parameters That Affect the Supercritical Extraction of TCA from Cork The Influence of Water on the Solubility of Carbon Dioxide in Ionic Liquids Modelling Nucleation and Cell Size During the Continuous Process of Extrusion Assisted by Supercritical CO ₂ Thermodynamic Modeling of Fennel (Foeniculum vulgar mill) and Argan (Argania spinosa I) Essential Oils Solubility in Supercritical Carbon Dioxide Supercritical Extraction for Matural Products: Phase Equilibrium Study of the Ternary System CO ₂ + H2O + Ethanol at Elevated Pressure High-Pressure Phase Equilibria of the Pseudo-Ternary System Carbon Dioxide + Ethanol + Fish Oil Conception of CO ₂ -phile and Selective Extractants for Supercritical CO ₂ Extraction of Metals Extended Correlation to Predict High Pressure Solubility of Carbon Dioxide in the 1-Ethyl-3-Methylimidazolium	
PK11 Extraction of Triglycerides from Nannochloropsis sp. Using Supercritical CO ₂ as Solvent PK12 Binary Phase Equilibrium, Density and Viscosity Measurement of 100 GSt and 200 GSt Polydimethylsiloxane in CO ₂ PK13 Measurement and Modelling of Sorption and Diffusion of Supercritical CO ₂ in Synthetic- and Natural-Based Polymers PK14 Phase Behavior for the 2-trimethylsilydoxylethyl methacrylate and 3-trimethoxysilyl]oropyl Methacrylate in Supercritical CO ₂ at Various Temperatures and Pressures Up to 20 MPa PK15 Liquid-Vapor Equilibrium Data, Density and other Volumetric Properties of Carbon Dioxide + Acrylic Acid Binary Mixtures at High Pressure PK16 Optimization of Supercritical Water Oxidation Process Using Aspen Plus* PK18 The Enfluence of Water on the Solubility of Carbon Dioxide in Ionic Liquids PK19 Modelling Nucleation and Cell Size During the Continuous Process of Extrusion Assisted by Supercritical CO ₂ PK20 Thermodynamic Modelling of Fennel (Foeniculum vulgar mill) and Argan (Argania spinosa I) Essential Olis Solubility in Supercritical Carbon Dioxide Supercritical Extraction from Natural Products: Phase Equilibrium Study of the Tenary System CO ₂ + H20 + Ethanol at Elevated Pressure PK22 High-Pressure Phase Equilibria of the Pseudo-Ternary System Carbon Dioxide in Inthe 1-Ethyl-3-Methylimidazolium Family of lonic Liquids PK23 Conception of CO ₂ -philie and Selective Extractants for Supercritical Co	Kill Extraction of Triglycerides from Nannochloropsis sp. Using Supercritical CD ₂ as Solvent April Kill Extraction of Triglycerides from Nannochloropsis sp. Using Supercritical CD ₂ as Solvent April Kill Binary Phase Equilibrium, Density and Viscosity Measurement of 100 cSt and 200 CSt Polydimethylsiloxane in CD ₂ Kill Phase Behavior for the 2-(trimethylsilyloxylethyl methacrylate and 3-(trimethysilylopyl) Wethacrylate in Supercritical CO, at Various Temperatures and Pressures to to 20 MPa Kill Upuid-Vapor Equilibrium Data, Density and other Volumetric Properties of Carbon Dioxide + Acrylic Acid Binary Mixtures at High Pressure Kill Deptimization of Supercritical Water Oxidation Process Using Aspen Plus ⁶ Kill The Influence of Water on the Solubility of Carbon Dioxide in Ionic Liquids Kill Modelling Nucleation and Cell Size During the Continuous Process of Extrusion Assisted by Supercritical CO ₂ . Kill Supercritical Extraction of Tone Natural Products: Phase Equilibrium Study of the Ternary System CO ₂ + H2O + Ethanol at Elevated Pressure Kill Supercritical Extraction of Pressure Phase Equilibrium Study of the Ternary System CO ₂ + H2O + Ethanol at Elevated Pressure Kill Supercritical Extraction of Pressure Phase Equilibrium Study of the Ternary System CO ₂ + H2O + Ethanol at Elevated Pressure Kill Supercritical Extraction FeeqEquilibrium Study of Metals <td>PK11 PK12 PK13 PK14 PK15 PK16 PK17 PK18 PK19 PK20 PK21 PK22 PK23 PK25 PK26 PK28 PK29 PK30 PK31 PK32 PK33 PK34 PK35 PM01</td> <td>Extraction of Triglycerides from Nannochloropsis sp. Using Supercritical CO2 as Solvent Binary Phase Equilibrium, Density and Viscosity Measurement of 100 cSt and 200 cSt Polydimethylsiloxane in CO2 Measurement and Modelling of Sorption and Diffusion of Supercritical CO2 in Synthetic- and Natural-Based Polymers Phase Behavior for the 2-(trimethylsilyloxy)ethyl methacrylate and 3-(trimethoxysilyl)propyl Methacrylate in Supercritical CO2 at Various Temperatures and Pressures Up to 20 MPa Liquid-Vapor Equilibrium Data, Density and other Volumetric Properties of Carbon Dioxide + Acrylic Acid Binary Mixtures at High Pressure Optimization of Supercritical Water Oxidation Process Using Aspen Plus® The Parameters That Affect the Supercritical Extraction of TCA from Cork The Influence of Water on the Solubility of Carbon Dioxide in Ionic Liquids Modelling Nucleation and Cell Size During the Continuous Process of Extrusion Assisted by Supercritical CO2 Thermodynamic Modeling of Fennel (Foeniculum vulgar mill) and Argan (Argania spinosa I) Essential Oils Solubility in Supercritical Carbon Dioxide Supercritical Extraction from Natural Products: Phase Equilibrium Study of the Ternary System CO2 + H2O + Ethanol at Elevated Pressure High-Pressure Phase Equilibria of the Pseudo-Ternary System Carbon Dioxide + Ethanol + Fish Oil Conception of CO2-phile and Selective Extractants for Supercritical CO2 Extraction of Metals Extended Correlation to Predict High Pressure Solubility of Carbon Dioxide in the 1-Ethyl-3-Methylimidazolium</td> <td></td>	PK11 PK12 PK13 PK14 PK15 PK16 PK17 PK18 PK19 PK20 PK21 PK22 PK23 PK25 PK26 PK28 PK29 PK30 PK31 PK32 PK33 PK34 PK35 PM01	Extraction of Triglycerides from Nannochloropsis sp. Using Supercritical CO2 as Solvent Binary Phase Equilibrium, Density and Viscosity Measurement of 100 cSt and 200 cSt Polydimethylsiloxane in CO2 Measurement and Modelling of Sorption and Diffusion of Supercritical CO2 in Synthetic- and Natural-Based Polymers Phase Behavior for the 2-(trimethylsilyloxy)ethyl methacrylate and 3-(trimethoxysilyl)propyl Methacrylate in Supercritical CO2 at Various Temperatures and Pressures Up to 20 MPa Liquid-Vapor Equilibrium Data, Density and other Volumetric Properties of Carbon Dioxide + Acrylic Acid Binary Mixtures at High Pressure Optimization of Supercritical Water Oxidation Process Using Aspen Plus® The Parameters That Affect the Supercritical Extraction of TCA from Cork The Influence of Water on the Solubility of Carbon Dioxide in Ionic Liquids Modelling Nucleation and Cell Size During the Continuous Process of Extrusion Assisted by Supercritical CO2 Thermodynamic Modeling of Fennel (Foeniculum vulgar mill) and Argan (Argania spinosa I) Essential Oils Solubility in Supercritical Carbon Dioxide Supercritical Extraction from Natural Products: Phase Equilibrium Study of the Ternary System CO2 + H2O + Ethanol at Elevated Pressure High-Pressure Phase Equilibria of the Pseudo-Ternary System Carbon Dioxide + Ethanol + Fish Oil Conception of CO2-phile and Selective Extractants for Supercritical CO2 Extraction of Metals Extended Correlation to Predict High Pressure Solubility of Carbon Dioxide in the 1-Ethyl-3-Methylimidazolium	
PK12 Binary Phase Equilibrium, Density and Viscosity Measurement of 100 cSt and 200 cSt Polydimethylsiloxane in Co. PK13 Measurement and Modelling of Sorption and Diffusion of Supercritical CO ₂ in Synthetic- and Natural-Based Polymers PK14 Phase Behavior for the 2-(trimethylsilyloxylethyl methacrylate and 3-(trimethoxysilyl)propyl Methacrylate in Supercritical CO ₁ at Various Temperatures and Pressures Up to 20 MPa PK14 Phase Behavior for the 2-(trimethylsilyloxylethyl methacrylate and 3-(trimethoxysilyl)propyl Methacrylate in Supercritical CO ₁ at Various Temperatures and Pressures Up to 20 MPa PK15 Liquid-Vapor Equilibrium Data, Density and other Volumetric Properties of Carbon Dioxide + Acrylic Acid Binary Mixtures at High Pressure PK17 The Parameters That Affect the Supercritical Extraction of ToA from Cork PK18 The Influence of Water on the Solubility of Carbon Dioxide in Ionic Liquids PK20 Thermodynamic Modeling of Fennel (Feeniculum vulgar mill) and Argan (Argania spinosa I) Essential Oils Solubility in supercritical Carbon Dioxide Extended Correlation for Natural Products: Phase Equilibrium Study of the Ternary System CO ₂ + H20 + Ethanol at Elevated Pressure PK21 High-Pressure Phase Equilibria of the Pseudo-Ternary System Carbon Dioxide in the 1-Ethyl-3-Methylimidazolium Family of Ionic Liquids PK22 High-Pressure Phase Equilibria of the System Solubility of Carbon Dioxide Impregnation of a Polyurethane Membrane with Borag	 K12 Binary Phase Equilibrium, Density and Viscosity Measurement of 100 cSt and 200 cSt Polydimethylsiloxane in CO₂. Masurement and Modelling of Sorption and Diffusion of Supercritical CO₂ in Synthetic- and Natural-Based Polymers Masurement and Modelling of Sorption and Diffusion of Supercritical CO₂ in Synthetic- and Natural-Based Polymers Phase Behavior for the 2-(trimethylsilyloxylethyl methacrylate and 3-(trimethoxysilyl)propyl Methacrylate in Supercritical Co₂ at Various Temperatures and Pressures Up to 20 MPa Liugid/Apor Equilibrium Data, Density and other Volumetric Properties of Carbon Dioxide + Acrylic Acid Binary Mixtures at High Pressure Gortimization of Supercritical Water Oxidation Process Using Aspen Plus[®] The Parameters That Affect the Supercritical Extraction of TCA from Cork Modelling Nucleation and Cell Size During the Continuous Process of Extrusion Assisted by Supercritical CO₂. Modelling fuelaetion and Cell Size During the Continuous Process of Extrusion Assisted by Supercritical CO₂. Solubility in Supercritical Carbon Dioxide in Ionic Liquids Supercritical Extraction from Natural Products: Phase Equilibrium Study of the Tenary System CO₂ + H2O + Ethanol at Elevated Pressure Extended Correlation to Predict High Pressure Solubility of Carbon Dioxide in the 1-Ethyl-3-Methylimidazolium Farnily of Ionic Liquids Size Sciencori in the Synthesis of Organic Modified Boehmite with High Spect Ratio in Hot-compressed Water Size Sciencori in the Synthesis of Organic Modified Boehmite with High Spect Ratio in Hot-compressed Water Size Sciencori in the Synthesis of Organic Modified Boehmite with High Spect Ratio in Hot-compressed Water Size Sciencori in the Synthesis of Organic Modified Boehmite with High Spect Ratio in Hot-compressed Water Size Sciencori in the Synthesis	PK12 PK13 PK14 PK15 PK16 PK17 PK18 PK19 PK20 PK21 PK22 PK23 PK25 PK26 PK28 PK29 PK31 PK32 PK33 PK34 PK35 PM01	Binary Phase Equilibrium, Density and Viscosity Measurement of 100 cSt and 200 cSt Polydimethylsiloxane in CO2 Measurement and Modelling of Sorption and Diffusion of Supercritical CO2 in Synthetic- and Natural-Based Polymers Phase Behavior for the 2-(trimethylsilyloxy)ethyl methacrylate and 3-(trimethoxysilyl)propyl Methacrylate in Supercritical CO2 at Various Temperatures and Pressures Up to 20 MPa Liquid-Vapor Equilibrium Data, Density and other Volumetric Properties of Carbon Dioxide + Acrylic Acid Binary Mixtures at High Pressure Optimization of Supercritical Water Oxidation Process Using Aspen Plus® The Parameters That Affect the Supercritical Extraction of TCA from Cork The Influence of Water on the Solubility of Carbon Dioxide in Ionic Liquids Modelling Nucleation and Cell Size During the Continuous Process of Extrusion Assisted by Supercritical CO2 Thermodynamic Modeling of Fennel (Foeniculum vulgar mill) and Argan (Argania spinosa I) Essential Oils Solubility in Supercritical Carbon Dioxide Supercritical Extraction from Natural Products: Phase Equilibrium Study of the Ternary System CO2 + H2O + Ethanol at Elevated Pressure High-Pressure Phase Equilibria of the Pseudo-Ternary System Carbon Dioxide + Ethanol + Fish Oil Conception of CO2-phile and Selective Extractants for Supercritical CO2 Extraction of Metals Extended Correlation to Predict High Pressure Solubility of Carbon Dioxide in the 1-Ethyl-3-Methylimidazolium	April
CQ2 PK13 Measurement and Modelling of Sorption and Diffusion of Supercritical CQ2 in Synthetic- and Natural-Based Polymers PK14 Phase Behavior for the 2-(trimethylsilyloxylethyl methacrylate and 3-(trimethoxysilyl)propyl Methacrylate in Supercritical CQ2 at Various Temperatures and Pressures Up to 20 MPa PK15 Liquid-Vapor Equilibrium Data, Density and other Volumetric Properties of Carbon Dioxide + Acrylic Acid Binary Mixtures at High Pressure PK16 Optimization of Supercritical Water Oxidation Process Using Aspen Plus* PK17 The Parameters That Affect the Supercritical Extraction of TCA from Cork PK18 The Influence of Water on the Solubility of Carbon Dioxide in Ionic Liquids PK19 Modelling Nucleation and Cell Size During the Continuous Process of Extrusion Assisted by Supercritical CO2 PK20 Thermodynamic Modeling of Fennel (Foeniculum vulgar mill) and Argan (Argania spinosa I) Essential Olis Solubility in Supercritical Carbon Dioxide Extended Correlation to Predict High Pressure Solubility of Carbon Dioxide + Ethanol + Fish Oli PK22 High-Pressure Phase Equilibria of the Pseudo-Ternary System Carbon Dioxide in the 1-Ethyl-3-Methylimidazolium Family of Ionic Liquids Size-control in the Synthesis of Organic Modified Boehmite with High Spect Ratio in Hot-compressed Water PK24 Size-control in the Synthesis of Organic Modified Boehmite with High Spect Ratio in Hot-compressed Water	CO2 CO3 K13 Measurement and Modelling of Sorption and Diffusion of Supercritical CO2 in Synthetic- and Natural-Based Polymers K14 Phase Behavior for the 2-(trimethylsilyloxylethyl methacrylate and 3-(trimethoxysillyl)propyl Methacrylate in Supercritical CO3 at Various Temperatures and Pressures to 20 MPa K15 Liquid-Vapor Equilibrium Data, Density and other Volumetric Properties of Carbon Dioxide + Acrylic Acid Binary Mixtures at High Pressure K16 Optimization of Supercritical Water Oxidation Process Using Aspen Plus* K17 The Parameters That Affect the Supercritical Extraction of TCA from Cork K18 The Influence of Water on the Solubility of Carbon Dioxide in Ionic Liquids K19 Modelling Nucleation and Cell Size During the Continuous Process of Extrusion Assisted by Supercritical CO2. K10 Thermodynamic Modelling of Fennel (Foleniculum vulgar mill) and Argan (Argania spinosa I) Essential Olis Solubility in Supercritical Extraction Dioxide Pressure Nuclearing Argania Supercritical CO2. K12 High-Pressure Phase Equilibria of the Pseudo-Ternany System Carbon Dioxide + Ethanol + Fish Oil Nuclearing Argania Supercritical CO2. K22 Kight-Pressure Phase Equilibria of Croganic Modified Boehmite with High Spect Ratio in He1-Ethyl-3-Methylimidazolium Family of Ionic Liquids as Solvents and Co-Catalysts on the Coupling Reaction between CO2 and Epoxide 27 th K23 Fred	PK13 PK14 PK15 PK16 PK17 PK18 PK19 PK20 PK21 PK22 PK23 PK26 PK28 PK29 PK30 PK31 PK32 PK33 PK34 PK35 PM01	CO2 Measurement and Modelling of Sorption and Diffusion of Supercritical CO2 in Synthetic- and Natural-Based Polymers Phase Behavior for the 2-(trimethylsilyloxy)ethyl methacrylate and 3-(trimethoxysilyl)propyl Methacrylate in Supercritical CO2 at Various Temperatures and Pressures Up to 20 MPa Liquid-Vapor Equilibrium Data, Density and other Volumetric Properties of Carbon Dioxide + Acrylic Acid Binary Mixtures at High Pressure Optimization of Supercritical Water Oxidation Process Using Aspen Plus® The Parameters That Affect the Supercritical Extraction of TCA from Cork The Influence of Water on the Solubility of Carbon Dioxide in Ionic Liquids Modelling Nucleation and Cell Size During the Continuous Process of Extrusion Assisted by Supercritical CO2 Thermodynamic Modeling of Fennel (Foeniculum vulgar mill) and Argan (Argania spinosa I) Essential Oils Solubility in Supercritical Carbon Dioxide Supercritical Extraction from Natural Products: Phase Equilibrium Study of the Ternary System CO2 + H2O + Ethanol at Elevated Pressure High-Pressure Phase Equilibria of the Pseudo-Ternary System Carbon Dioxide + Ethanol + Fish Oil Conception of CO2-phile and Selective Extractants for Supercritical CO2 Extraction of Metals Extended Correlation to Predict High Pressure Solubility of Carbon Dioxide in the 1-Ethyl-3-Methylimidazolium	
Polymers PK14 Phase Behavior for the 2-(trimethylsilyloxy)ethyl methacrylate and 3-(trimethoxysilyl)propyl Methacrylate in Supercritical CO ₂ at Various Temperatures and Pressures Up to 20 MPa PK15 Liquid-Vapor Equilibrium Data, Density and other Volumetric Properties of Carbon Dioxide + Acrylic Acid Binary Mixtures at High Pressure PK16 Optimization of Supercritical Water Oxidation Process Using Aspen Plus* PK17 The Parameters That Affect the Supercritical Extraction of TCA from Cork PK18 The Influence of Water on the Solubility of Carbon Dioxide in Ionic Liquids PK19 Modelling Nucleation and Cell Size During the Continuous Process of Extrusion Assisted by Supercritical CO ₂ PK20 Thermodynamic Modeling of Fennel (Foeniculum vulgar mill) and Argan (Argania spinosa) II Essential Oils Solubility in Supercritical Extraction from Natural Products: Phase Equilibrium Study of the Ternary System CO ₂ + H2O + Ethanol at Elevated Pressure PK22 High-Pressure Phase Equilibria of the Pseudo-Ternary System Carbon Dioxide + Ethanol + Fish Oil PK23 Conception of CO ₂ -phile and Selective Extractants for Supercritical CO ₂ Extraction of Metals PK24 Prediction of Supercritical Carbon Dioxide Impregnation of a Polyurethane Membrane with Borage Oil from Phase Behaviour of the Ternary System CO ₂ -Mixtures: Effect of Characterization Mething Methavious of the CPA Eos in Estimating Density of DeepE Lutectic Solvents <t< td=""><td>Polymers Polymers K14 Phase Behavior for the 2-(trimethylsilylovylethyl methacrylate and 3-(trimethoxysilyl)propyl Methacrylate in Supercritical CO₂ at Various Temperatures and Pressures Up to 20 MPa K15 Liquid-Vapor Equilibrium Data, Density and other Volumetric Properties of Carbon Dioxide + Acrylic Acid Binary Mixtures at High Pressure K16 Optimization of Supercritical Water Oxidation Process Using Aspen Plus[®] K17 The Parameters That Affect the Supercritical Extraction of TCA from Cork K18 The Influence of Water on the Solubility of Carbon Dioxide in Ionic Liquids K19 Modelling Nucleation and Cell Size During the Continuous Process of Extrusion Assisted by Supercritical CO₂ The modynamic Modeling of Fernel (Foeniculum vulgar mill) and Argan (Argania spinosa I) Essential Oils Solubility in Supercritical Extraction from Natural Products: Phase Equilibrium Study of the Ternary System CO₂ + H2O + Ethanol at Elevated Pressure K21 High-Pressure Phase Equilibria of the Pseudo-Ternary System Carbon Dioxide + Ethanol + Fish Oil K22 High-Pressure Phase Belavior of Crude Oil and Impure CO₂ Mixtures: Effect of Characterization Methods K22 Fise-Control in the Synthesis of Organic Modified Boehmite with High Spect Ratio in Hot-compressed Water K23 Concentrol Supercritical Carbon Dioxide Impregnation of a Polyurethane Membrane with Borage Oil from Phase Behaviour of the Ternary System <t< td=""><td>PK14 PK14 PK15 PK16 PK17 I PK18 I PK19 I PK20 I PK21 I PK22 I PK23 I PK26 I PK28 I PK29 I PK30 I PK31 I PK33 I PK34 I PK35 I</td><td>PolymersPhase Behavior for the 2-(trimethylsilyloxy)ethyl methacrylate and 3-(trimethoxysilyl)propyl Methacrylate in Supercritical CO2 at Various Temperatures and Pressures Up to 20 MPaLiquid-Vapor Equilibrium Data, Density and other Volumetric Properties of Carbon Dioxide + Acrylic Acid Binary Mixtures at High PressureOptimization of Supercritical Water Oxidation Process Using Aspen Plus®The Parameters That Affect the Supercritical Extraction of TCA from CorkThe Influence of Water on the Solubility of Carbon Dioxide in Ionic LiquidsModelling Nucleation and Cell Size During the Continuous Process of Extrusion Assisted by Supercritical CO2Thermodynamic Modeling of Fennel (Foeniculum vulgar mill) and Argan (Argania spinosa I) Essential Oils Solubility in Supercritical Carbon DioxideSupercritical Extraction from Natural Products: Phase Equilibrium Study of the Ternary System CO2 + H2O + Ethanol at Elevated PressureHigh-Pressure Phase Equilibria of the Pseudo-Ternary System Carbon Dioxide + Ethanol + Fish OilConception of CO2-phile and Selective Extractants for Supercritical CO2 Extraction of MetalsExtended Correlation to Predict High Pressure Solubility of Carbon Dioxide in the 1-Ethyl-3-Methylimidazolium</td><td></td></t<></td></t<>	Polymers Polymers K14 Phase Behavior for the 2-(trimethylsilylovylethyl methacrylate and 3-(trimethoxysilyl)propyl Methacrylate in Supercritical CO ₂ at Various Temperatures and Pressures Up to 20 MPa K15 Liquid-Vapor Equilibrium Data, Density and other Volumetric Properties of Carbon Dioxide + Acrylic Acid Binary Mixtures at High Pressure K16 Optimization of Supercritical Water Oxidation Process Using Aspen Plus [®] K17 The Parameters That Affect the Supercritical Extraction of TCA from Cork K18 The Influence of Water on the Solubility of Carbon Dioxide in Ionic Liquids K19 Modelling Nucleation and Cell Size During the Continuous Process of Extrusion Assisted by Supercritical CO ₂ The modynamic Modeling of Fernel (Foeniculum vulgar mill) and Argan (Argania spinosa I) Essential Oils Solubility in Supercritical Extraction from Natural Products: Phase Equilibrium Study of the Ternary System CO ₂ + H2O + Ethanol at Elevated Pressure K21 High-Pressure Phase Equilibria of the Pseudo-Ternary System Carbon Dioxide + Ethanol + Fish Oil K22 High-Pressure Phase Belavior of Crude Oil and Impure CO ₂ Mixtures: Effect of Characterization Methods K22 Fise-Control in the Synthesis of Organic Modified Boehmite with High Spect Ratio in Hot-compressed Water K23 Concentrol Supercritical Carbon Dioxide Impregnation of a Polyurethane Membrane with Borage Oil from Phase Behaviour of the Ternary System <t< td=""><td>PK14 PK14 PK15 PK16 PK17 I PK18 I PK19 I PK20 I PK21 I PK22 I PK23 I PK26 I PK28 I PK29 I PK30 I PK31 I PK33 I PK34 I PK35 I</td><td>PolymersPhase Behavior for the 2-(trimethylsilyloxy)ethyl methacrylate and 3-(trimethoxysilyl)propyl Methacrylate in Supercritical CO2 at Various Temperatures and Pressures Up to 20 MPaLiquid-Vapor Equilibrium Data, Density and other Volumetric Properties of Carbon Dioxide + Acrylic Acid Binary Mixtures at High PressureOptimization of Supercritical Water Oxidation Process Using Aspen Plus®The Parameters That Affect the Supercritical Extraction of TCA from CorkThe Influence of Water on the Solubility of Carbon Dioxide in Ionic LiquidsModelling Nucleation and Cell Size During the Continuous Process of Extrusion Assisted by Supercritical CO2Thermodynamic Modeling of Fennel (Foeniculum vulgar mill) and Argan (Argania spinosa I) Essential Oils Solubility in Supercritical Carbon DioxideSupercritical Extraction from Natural Products: Phase Equilibrium Study of the Ternary System CO2 + H2O + Ethanol at Elevated PressureHigh-Pressure Phase Equilibria of the Pseudo-Ternary System Carbon Dioxide + Ethanol + Fish OilConception of CO2-phile and Selective Extractants for Supercritical CO2 Extraction of MetalsExtended Correlation to Predict High Pressure Solubility of Carbon Dioxide in the 1-Ethyl-3-Methylimidazolium</td><td></td></t<>	PK14 PK14 PK15 PK16 PK17 I PK18 I PK19 I PK20 I PK21 I PK22 I PK23 I PK26 I PK28 I PK29 I PK30 I PK31 I PK33 I PK34 I PK35 I	PolymersPhase Behavior for the 2-(trimethylsilyloxy)ethyl methacrylate and 3-(trimethoxysilyl)propyl Methacrylate in Supercritical CO2 at Various Temperatures and Pressures Up to 20 MPaLiquid-Vapor Equilibrium Data, Density and other Volumetric Properties of Carbon Dioxide + Acrylic Acid Binary Mixtures at High PressureOptimization of Supercritical Water Oxidation Process Using Aspen Plus®The Parameters That Affect the Supercritical Extraction of TCA from CorkThe Influence of Water on the Solubility of Carbon Dioxide in Ionic LiquidsModelling Nucleation and Cell Size During the Continuous Process of Extrusion Assisted by Supercritical CO2Thermodynamic Modeling of Fennel (Foeniculum vulgar mill) and Argan (Argania spinosa I) Essential Oils Solubility in Supercritical Carbon DioxideSupercritical Extraction from Natural Products: Phase Equilibrium Study of the Ternary System CO2 + H2O + Ethanol at Elevated PressureHigh-Pressure Phase Equilibria of the Pseudo-Ternary System Carbon Dioxide + Ethanol + Fish OilConception of CO2-phile and Selective Extractants for Supercritical CO2 Extraction of MetalsExtended Correlation to Predict High Pressure Solubility of Carbon Dioxide in the 1-Ethyl-3-Methylimidazolium	
Supercritical CO, at Various Temperatures and Pressures Up to 20 MPa PK15 Liquid-Vapor Equilibrium Data, Density and other Volumetric Properties of Carbon Dioxide + Acrylic Acid Binary Mixtures at High Pressure PK16 Optimization of Supercritical Water Oxidation Process Using Aspen Plus* PK17 The Parameters That Affect the Supercritical Extraction of TCA from Cork PK18 The Influence of Water on the Solubility of Carbon Dioxide in Ionic Liquids PK20 Thermodynamic Modeling of Fennel (Foenciulum vulgar mill) and Argan (Argania spinosa I) Essential Olis Solubility in Supercritical Carbon Dioxide PK21 High-Pressure Phase Equilibria of the Pseudo-Ternary System Carbon Dioxide + Ethanol + Fish Oil PK22 High-Pressure Phase Equilibria of the Pseudo-Ternary System Carbon Dioxide + Ethanol + Fish Oil PK22 High-Pressure Phase Equilibria of the Pseudo-Ternary System Carbon Dioxide + Ethanol + Fish Oil PK23 Extended Correlation to Predict High Pressure Solubility of Carbon Dioxide in the 1-Ethyl-3-Methylimidazolium Family of Ionic Liquids PK26 Extended Correlation of Supercritical Carbon Dioxide Impregnation of a Polyurethane Membrane with Borage Oil from Phase Behaviour of the Ternary System PK29 Modeling High-Pressure Phase Behavior of Crude Oil and Impure CO: Mixtures: Effect of Characterization Methods PK30 Effect of Different Ionic Liquids as Solvents and Co-Catalysts on the	Supercritical CO ₂ at Various Temperatures and Pressures Up to 20 MPa K15 Liquid-Vapor Equilibrium Data, Density and other Volumetric Properties of Carbon Dioxide + Acrylic Acid Binary Mixtures at High Pressure K16 Optimization of Supercritical Water Oxidation Process Using Aspen Plus* K17 The Parameters That Affect the Supercritical Extraction of TCA from Cork K18 The Influence of Water on the Solubility of Carbon Dioxide in Ionic Liquids K19 Modelling Nucleation and Cell Size During the Continuous Process of Extrusion Assisted by Supercritical CO ₂ K18 The Influence of Water on the Solubility of Carbon Dioxide in Ionic Liquids K13 Supercritical Extraction from Natural Products: Phase Equilibrium Study of the Ternary System CO ₂ + H2O + Ethanol at Elevated Pressure Extended Correlation to Predict High Pressure Solubility of Carbon Dioxide in the 1-Ethyl-3-Methylimidazolium Faigh-Pressure Phase Equilibria of the Pseudo-Ternary System Carbon Dioxide in the 1-Ethyl-3-Methylimidazolium Z1 th K22 High-Pressure Phase Behavior of Crude Oil and Impure CO ₂ Mixtures: Effect of Characterization April K23 Robeling High-Pressure Phase Behavior of Crude Oil and Impure CO ₂ Mixtures: Effect of Characterization April K24 Pressure Control in A Continuous, Pilot-Scale SFE Process S1 Studying CO ₂ -philicity	PK15 PK16 PK17 PK18 PK19 PK20 PK21 PK22 PK23 PK26 PK28 PK29 PK30 PK31 PK32 PK33 PK34 PK35 PM01	Supercritical CO2 at Various Temperatures and Pressures Up to 20 MPa Liquid-Vapor Equilibrium Data, Density and other Volumetric Properties of Carbon Dioxide + Acrylic Acid Binary Mixtures at High Pressure Optimization of Supercritical Water Oxidation Process Using Aspen Plus® The Parameters That Affect the Supercritical Extraction of TCA from Cork The Influence of Water on the Solubility of Carbon Dioxide in Ionic Liquids Modelling Nucleation and Cell Size During the Continuous Process of Extrusion Assisted by Supercritical CO2 Thermodynamic Modeling of Fennel (Foeniculum vulgar mill) and Argan (Argania spinosa I) Essential Oils Solubility in Supercritical Carbon Dioxide Supercritical Extraction from Natural Products: Phase Equilibrium Study of the Ternary System CO2 + H2O + Ethanol at Elevated Pressure High-Pressure Phase Equilibria of the Pseudo-Ternary System Carbon Dioxide + Ethanol + Fish Oil Conception of CO2-phile and Selective Extractants for Supercritical CO2 Extraction of Metals Extended Correlation to Predict High Pressure Solubility of Carbon Dioxide in the 1-Ethyl-3-Methylimidazolium	
PK15 Liquid-Vapor Equilibrium Data, Density and other Volumetric Properties of Carbon Dioxide + Acrylic Acid Binary Mixtures at High Pressure PK16 Optimization of Supercritical Water Oxidation Process Using Aspen Plus* PK17 The Parameters That Affect the Supercritical Extraction of TCA from Cork PK18 The Influence of Water on the Solubility of Carbon Dioxide in Ionic Liquids PK19 Modelling Nucleation and Cell Size During the Continuous Process of Extrusion Assisted by Supercritical CO ₂ PK20 Thermodynamic Modeling of Fennel (Foeniculum vulgar mill) and Argan (Argania spinosa I) Essential Oils Solubility in Supercritical Carbon Dioxide Expercritical Extraction from Natural Products: Phase Equilibrium Study of the Ternary System CO ₂ + H2O + Ethanol at Elevated Pressure Ph22 High-Pressure Phase Equilibria of the Pseudo-Ternary System Carbon Dioxide + Ethanol + Fish Oil PK23 Extended Correlation to Predict High Pressure Solubility of Carbon Dioxide in the 1-Ethyl-3-Methylimidazolium Family of lonic Liquids PK26 Size-control in the Synthesis of Organic Modified Boehmite with High Spect Ratio in Hot-compressed Water PK26 Size-control in the Synthesis of Organic Modified Moehmite with High Spect Ratio in Hot-compressed Water PK30 Effect of Different Ionic Liquids as Solvents and Co-Catalysts on the Coupling Reaction between CO ₂ and Epoxides PK31	K1S Liquid-Vapor Equilibrium Data, Density and other Volumetric Properties of Carbon Dioxide + Acrylic Acid Binary Mixtures at High Pressure K16 Optimization of Supercritical Water Oxidation Process Using Aspen Plus* K17 The Parameters That Affect the Supercritical Extraction of TCA from Cork K18 The Influence of Water on the Solubility of Carbon Dioxide in Ionic Liquids K19 Modelling Nucleation and Cell Size During the Continuous Process of Extrusion Assisted by Supercritical CO, K20 Thermodynamic Modeling of Fennel (Feeniculum vulgar mill) and Argani Argani Aspinosa I) Essential Olis Sublity in Supercritical Carbon Dioxide Supercritical Extraction from Natural Products: Phase Equilibrium Study of the Ternary System CO ₂ + H2O + K21 High-Pressure Phase Equilibria of the Pseudo-Ternary System Carbon Dioxide in the 1-Ethyl-3-Methylimidazolium Family of Ionic Liquids Sciencotrol in the Synthesis of Organic Modified Boehmite with High Spect Ratio in Hot-compressed Water 27 th K28 Prediction of Supercritical Carbon Dioxide Impregnation of a Polyurethane Membrane with Borage Oil from Phase Equivoir of the Ternary System April K28 Prediction of Supercritical Action Dioxide Impregnation of Supercritical CO ₂ Spray Drying Z2 th K29 Modeling High-Pressure Phase Behavior of Crude Oil and Impure CO ₂ Mixtures: Effect of Characterization Methods	PK15 PK16 PK17 PK18 PK19 PK20 PK21 PK22 PK23 PK25 PK26 PK28 PK29 PK30 PK31 PK32 PK33 PK34 PK35 PM01	Liquid-Vapor Equilibrium Data, Density and other Volumetric Properties of Carbon Dioxide + Acrylic Acid Binary Mixtures at High Pressure Optimization of Supercritical Water Oxidation Process Using Aspen Plus® The Parameters That Affect the Supercritical Extraction of TCA from Cork The Influence of Water on the Solubility of Carbon Dioxide in Ionic Liquids Modelling Nucleation and Cell Size During the Continuous Process of Extrusion Assisted by Supercritical CO ₂ Thermodynamic Modeling of Fennel (Foeniculum vulgar mill) and Argan (Argania spinosa I) Essential Oils Solubility in Supercritical Carbon Dioxide Supercritical Extraction from Natural Products: Phase Equilibrium Study of the Ternary System CO ₂ + H2O + Ethanol at Elevated Pressure High-Pressure Phase Equilibria of the Pseudo-Ternary System Carbon Dioxide + Ethanol + Fish Oil Conception of CO ₂ -phile and Selective Extractants for Supercritical CO ₂ Extraction of Metals Extended Correlation to Predict High Pressure Solubility of Carbon Dioxide in the 1-Ethyl-3-Methylimidazolium	
PK16 Optimization of Supercritical Water Oxidation Process Using Aspen Plus* PK17 The Parameters That Affect the Supercritical Extraction of TCA from Cork PK18 The Influence of Water on the Solubility of Carbon Dioxide in Ionic Liquids PK19 Modelling Nucleation and Cell Size During the Continuous Process of Extrusion Assisted by Supercritical CO ₂ PK20 Thermodynamic Modeling of Fennel [Foeniculum vulgar mill) and Argan (Argania spinosa I) Essential Oils Solubility in Supercritical Extraction from Natural Products: Phase Equilibrium Study of the Ternary System CO ₂ + H2O + Ethanol at Elevated Pressure PK22 High-Pressure Phase Equilibria of the Pseudo-Ternary System Carbon Dioxide + Ethanol + Fish Oil PK23 Conception of CO ₂ -phile and Selective Extractants for Supercritical CO ₂ Extraction of Metals PK26 Size-control in the Synthesis of Organic Modified Boehmite with High Spect Ratio in Hot-compressed Water PK28 Prediction of Supercritical Carbon Dioxide Impregnation of a Polyurethane Membrane with Borage Oil from Phase Behaviour of the Ternary System Polyurethane Membrane with Borage Oil from PK30 Effect of Different Ionic Liquids as Solvents and Co-Catalysts on the Coupling Reaction between CO ₂ and Epoxides PK31 A Quality-by-Design Approach towards the Optimization of Supercritical CO ₂ Foray Drying	K16 Optimization of Supercritical Water Oxidation Process Using Aspen Plus* K17 The Parameters That Affect the Supercritical Extraction of TCA from Cork K18 The Influence of Water on the Solubility of Carbon Dioxide in Ionic Liquids K19 Modelling Nucleation and Cell Size During the Continuous Process of Extrusion Assisted by Supercritical Co2 K20 Theremodynamic Modeling of Fenne (Feeniculum vulgar mill) and Argani Argania spinosa I) Essential Oils Solubility in Supercritical Carbon Dioxide Supercritical Extraction from Natural Products: Phase Equilibrium Study of the Ternary System Co2 + H2O + K21 High-Pressure Phase Equilibria of the Pseudo-Ternary System Carbon Dioxide in the 1-thtyl-3-Methylimidazolium Family of Ionic Liquids State-control in the Synthesis of Organic Modified Boehmite with High Spect Ratio in Hot-compressed Water 27th K26 Size-control in the Synthesis of Organic Modified Boehmite with High Spect Ratio in Hot-compressed Water 27th K26 Size-control in the Synthesis of Organic Modified Boehmite with High Spect Ratio in Hot-compressed Water 27th K20 Prediction of the Fernary System Co2 Andre Fernary System K20 Modeling High-Pressure Phase Behavior of Crude Oil and Impure CO2 Mixtures: Effect of Characterization Methods Size Co2 K31 A Quality-by-Design Approach towards the Optimization	PK16 PK17 PK18 PK19 PK20 PK21 PK22 PK23 PK25 PK26 PK28 PK29 PK31 PK32 PK33 PK34 PK35 PM01	Optimization of Supercritical Water Oxidation Process Using Aspen Plus® The Parameters That Affect the Supercritical Extraction of TCA from Cork The Influence of Water on the Solubility of Carbon Dioxide in Ionic Liquids Modelling Nucleation and Cell Size During the Continuous Process of Extrusion Assisted by Supercritical CO2 Thermodynamic Modeling of Fennel (Foeniculum vulgar mill) and Argan (Argania spinosa I) Essential Oils Solubility in Supercritical Carbon Dioxide Supercritical Extraction from Natural Products: Phase Equilibrium Study of the Ternary System CO2 + H2O + Ethanol at Elevated Pressure High-Pressure Phase Equilibria of the Pseudo-Ternary System Carbon Dioxide + Ethanol + Fish Oil Conception of CO2-phile and Selective Extractants for Supercritical CO2 Extraction of Metals Extended Correlation to Predict High Pressure Solubility of Carbon Dioxide in the 1-Ethyl-3-Methylimidazolium	
PK17 The Parameters That Affect the Supercritical Extraction of TCA from Cork PK18 The Influence of Water on the Solubility of Carbon Dioxide in Ionic Liquids PK20 Thermodynamic Modelling Nucleation and Cell Size During the Continuous Process of Extrusion Assisted by Supercritical CO2 PK20 Thermodynamic Modelling of Fennel (Foeniculum vulgar mill) and Argan (Argania spinosa I) Essential Oils Solubility in Supercritical Corbon Natural Products: Phase Equilibrium Study of the Ternary System CO2 + H2O + PK21 High-Pressure Phase Equilibria of the Pseudo-Ternary System Carbon Dioxide + Ethanol + Fish Oil PK22 High-Pressure Phase Equilibria of the Pseudo-Ternary System Carbon Dioxide in the 1-Ethyl-3-Methylimidazolium Family of Ionic Liquids PK25 Extended Correlation to Predict High Pressure Solubility of Carbon Dioxide in the 1-Ethyl-3-Methylimidazolium Family of Ionic Liquids PK26 Size-control in the Synthesis of Organic Modified Boehmite with High Spect Ratio in Hot-compressed Water PK28 Prediction of Supercritical Carbon Dioxide Impregnation of a Polyurethane Membrane with Borage Oil from Phase Behaviour of the Ternary System PK30 Effect of Different Ionic Liquids as Solvents and Co-Catalysts on the Coupling Reaction between CO2 and Epoxides PK31 A Quality-by-Design Approach towards the Optimization of Supercritical CO2 Spray Drying PK32 CO2 carnot Cycle for Waste He	K17 The Parameters That Affect the Supercritical Extraction of TCA from Cork K18 The Influence of Water on the Solubility of Carbon Dioxide In Ionic Liquids K19 Modelling Nucleation and Cell Size During the Continuous Process of Extrusion Assisted by Supercritical CO2 K20 Thermodynamic Modeling of Fennel (Foeniculum vulgar mill) and Argan (Argania spinosa I) Essential Oils Solubility in Supercritical Carbon Dioxide Supercritical Extraction from Natural Products: Phase Equilibrium Study of the Ternary System CO2 + H2O + Ethanol at Elevated Pressure Extraction of CO2-phile and Selective Extractants for Supercritical CO2. Extraction of Metals K21 Extended Correlation to Predict High Pressure Solubility of Carbon Dioxide in the 1-Ethyl-3-Methylimidazolium Family of Ionic Liquids 27th K25 Extended Correlation of Dredict High Pressure Solubility of Carbon Dioxide in the 1-Ethyl-3-Methylimidazolium Family of Ionic Liquids as Solvents and Co-Catalysts on the Coupling Reaction between CO2 and Epoxides 27th K26 Different Ionic Liquids as Solvents and Co-Catalysts on the Coupling Reaction between CO2 and Epoxides 27th K31 A Quality-by-Design Approach towards the Optimization of Supercritical CO2, Spray Drying K32 CO2 Carnot Cycle for Waste Heat Utilization K32 Studying CO-philicity by High-pressure Nuclear Magnetic Resonance Supercritical CO2 Supercritical CO2, Sin Estimating Density of Deep E	PK17 PK18 PK19 PK20 PK21 PK22 PK23 PK25 PK26 PK28 PK29 PK30 PK31 PK32 PK33 PK34 PK35 PM01	The Parameters That Affect the Supercritical Extraction of TCA from Cork The Influence of Water on the Solubility of Carbon Dioxide in Ionic Liquids Modelling Nucleation and Cell Size During the Continuous Process of Extrusion Assisted by Supercritical CO2 Thermodynamic Modeling of Fennel (Foeniculum vulgar mill) and Argan (Argania spinosa I) Essential Oils Solubility in Supercritical Carbon Dioxide Supercritical Extraction from Natural Products: Phase Equilibrium Study of the Ternary System CO2 + H2O + Ethanol at Elevated Pressure High-Pressure Phase Equilibria of the Pseudo-Ternary System Carbon Dioxide + Ethanol + Fish Oil Conception of CO2-phile and Selective Extractants for Supercritical CO2 Extraction of Metals Extended Correlation to Predict High Pressure Solubility of Carbon Dioxide in the 1-Ethyl-3-Methylimidazolium	
PK18 The Influence of Water on the Solubility of Carbon Dioxide in Ionic Liquids PK19 Modelling Nucleation and Cell Size During the Continuous Process of Extrusion Assisted by Supercritical CO2 PK20 Thermodynamic Modeling of Fennel (Poeniculum vulgar mill) and Argan (Argania spinosa I) Essential Oils Solubility in Supercritical Carbon Dioxide Supercritical Extraction from Natural Products: Phase Equilibrium Study of the Ternary System CO2 + H2O + PK21 High-Pressure Phase Equilibria of the Pseudo-Ternary System Carbon Dioxide + Ethanol + Fish Oil PK22 High-Pressure Phase Equilibria of the Pseudo-Ternary System Carbon Dioxide + Ethanol + Fish Oil PK23 Conception of CO-phile and Selective Extractants for Supercritical CD2 Extraction of Metals PK24 Extended Correlation to Predict High Pressure Solubility of Carbon Dioxide in the 1-Ethyl-3-Methylimidazolium Family of Ionic Liquids PK26 Size-control in the Synthesis of Organic Modified Boehmite with High Spect Ratio in Hot-compressed Water PK28 Prediction of Supercritical Carbon Dioxide Impregnation of a Polyurethane Membrane with Borage Oil from Phase Behaviour of the Ternary System PK30 Effect of Different Ionic Liquids as Solvents and Co-Catalysts on the Coupling Reaction between CO2 and Epoxides PK31 A Quality-by-Design Approach towards the Optimization of Supercritical CO2: Spray Drying PK33 Co, Car	K18 The Influence of Water on the Solubility of Carbon Dioxide in Ionic Liquids K19 Modelling Nucleation and Cell Size During the Continuous Process of Extrusion Assisted by Supercritical CO ₂ : K20 Thermodynamic Modeling of Fennel (Foeniculum vulgar mill) and Argan (Argania spinosa I) Essential Oils Solubility in Supercritical Carbon Dioxide Supercritical Extraction from Natural Products: Phase Equilibrium Study of the Ternary System CO ₂ + H2O + Ethanol at Elevated Pressure High-Pressure Phase Equilibria of the Pseudo-Ternary System Carbon Dioxide + Ethanol + Fish Oil K22 High-Pressure Phase Equilibria of the Pseudo-Ternary System Carbon Dioxide in the 1-Ethyl-3-Methylimidazolium Family of Ionic Liquids K23 Conception of CO-phile and Selective Extractants for Supercritical CO ₂ Extraction of Metals K26 Size-control in the Synthesis of Organic Modified Boehmite with High Spect Ratio in Hot-compressed Water K27 Modeling High-Pressure Phase Behavior of Crude Oil and Impure CO ₂ Mixtures: Effect of Characterization Methods K31 A Quality-by-Design Approach towards the Optimization of Supercritical CO ₂ Spray Drying K32 CO ₂ Carnot Cycle for Waste Heat Utilization K33 Investigation of the CPA EoS in Estimating Density of Deep Eutectic Solvents K34 Pressure Control in a Continuous, Pilot-Scale SEF Frocess K35 Studying CO ₂ philicity by High	PK18 PK19 PK20 PK21 PK22 PK23 PK25 PK26 PK28 PK29 PK30 PK31 PK32 PK33 PK34 PK35 PM01	The Influence of Water on the Solubility of Carbon Dioxide in Ionic Liquids Modelling Nucleation and Cell Size During the Continuous Process of Extrusion Assisted by Supercritical CO ₂ Thermodynamic Modeling of Fennel (Foeniculum vulgar mill) and Argan (Argania spinosa I) Essential Oils Solubility in Supercritical Carbon Dioxide Supercritical Extraction from Natural Products: Phase Equilibrium Study of the Ternary System CO ₂ + H2O + Ethanol at Elevated Pressure High-Pressure Phase Equilibria of the Pseudo-Ternary System Carbon Dioxide + Ethanol + Fish Oil Conception of CO ₂ -phile and Selective Extractants for Supercritical CO ₂ Extraction of Metals Extended Correlation to Predict High Pressure Solubility of Carbon Dioxide in the 1-Ethyl-3-Methylimidazolium	
PK20 Thermodynamic Modeling of Fennel (Foeniculum vulgar mill) and Argan (Argania spinosa I) Essential Oils Solubility in Supercritical Carbon Dioxide PK21 Supercritical Extraction from Natural Products: Phase Equilibrium Study of the Ternary System CO ₂ + H2O + Ethanol at Elevated Pressure PK22 High-Pressure Phase Equilibria of the Pseudo-Ternary System Carbon Dioxide + Ethanol + Fish Oil PK23 Conception of CO ₂ -phile and Selective Extractants for Supercritical CO ₂ Extraction of Metals PK26 Extended Correlation to Predict High Pressure Solubility of Carbon Dioxide in the 1-Ethyl-3-Methylimidazolium Family of lonic Liquids PK26 Size-control in the Synthesis of Organic Modified Boehmite with High Spect Ratio in Hot-compressed Water PK28 Prediction of Supercritical Carbon Dioxide Impregnation of a Polyurethane Membrane with Borage Oil from Phase Behaviour of the Ternary System PK30 Effect of Different Ionic Liquids as Solvents and Co-Catalysts on the Coupling Reaction between CO ₂ and Epoxides PK31 A Quality-by-Design Approach towards the Optimization of Supercritical CO ₂ Spray Drying PK32 Studying CO ₂ -philicity by High-pressure Nuclear Magnetic Resonance PM31 Studying CO ₂ -philicity by High-pressure Nuclear Magnetic Resonance PM02 Cleaning of Wine Bottle Cork Stoppers with High Pressure Carbon Dioxide PM035 Studying CO ₂ -philicity by High	 K20 Thermodynamic Modeling of Fennel (Foeniculum vulgar mill) and Argan (Argania spinosa 1) Essential Oils Solubility in Supercritical Carbon Dioxide Supercritical Extraction from Natural Products: Phase Equilibrium Study of the Ternary System CO₂ + H2O + H2O + H2D + H2D	PK20 PK21 PK22 PK23 PK25 PK26 PK28 PK29 PK30 PK31 PK32 PK33 PK34 PK35 PM01	Thermodynamic Modeling of Fennel (Foeniculum vulgar mill) and Argan (Argania spinosa I) Essential Oils Solubility in Supercritical Carbon Dioxide Supercritical Extraction from Natural Products: Phase Equilibrium Study of the Ternary System CO ₂ + H2O + Ethanol at Elevated Pressure High-Pressure Phase Equilibria of the Pseudo-Ternary System Carbon Dioxide + Ethanol + Fish Oil Conception of CO ₂ -phile and Selective Extractants for Supercritical CO ₂ Extraction of Metals Extended Correlation to Predict High Pressure Solubility of Carbon Dioxide in the 1-Ethyl-3-Methylimidazolium	
Solubility in Supercritical Carbon Dioxide PY21 Supercritical Extraction from Natural Products: Phase Equilibrium Study of the Ternary System CO ₂ + H2O + Ethanol at Elevated Pressure PY22 High-Pressure Phase Equilibria of the Pseudo-Ternary System Carbon Dioxide + Ethanol + Fish Oil PY23 Conception of CO ₂ -phile and Selective Extractants for Supercritical CO ₂ Extraction of Metals PY24 High-Pressure Phase Equilibria of the Pseudo-Ternary System Carbon Dioxide in the 1-Ethyl-3-Methylimidazolium Family of lonic Liquids PY26 Size-control in the Synthesis of Organic Modified Boehmite with High Spect Ratio in Hot-compressed Water PY28 Prediction of Supercritical Carbon Dioxide Impregnation of a Polyurethane Membrane with Borage Oil from Phase Behaviour of the Ternary System PY29 Modeling High-Pressure Phase Behavior of Crude Oil and Impure CO ₂ Mixtures: Effect of Characterization Methods PY30 Effect of Different Ionic Liquids as Solvents and Co-Catalysts on the Coupling Reaction between CO ₂ and Epoxides PY31 A Quality-by-Design Approach towards the Optimization of Supercritical CO ₂ Spray Drying PY33 Eon Cy Carnot Cycle for Waste Heat Utilization PY34 Pressure Control in a Continuous, Pilot-Scale SFE Process PY35 Studying CO ₂ -philicity by High-pressure Nuclear Magnetic Resonance PYM04 Scale Up of Dispersion	Solubility in Supercritical Carbon Dioxide K21 Supercritical Extraction from Natural Products: Phase Equilibrium Study of the Ternary System CO ₂ + H2O + Ethanol at Elevated Pressure K22 High-Pressure Phase Equilibria of the Pseudo-Ternary System Carbon Dioxide + Ethanol + Fish Oil K23 Conception of CO ₂ -phile and Selective Extractants for Supercritical CO ₂ Extraction of Metals K25 Extended Correlation to Predict High Pressure Solubility of Carbon Dioxide in the 1-Ethyl-3-Methylimidazolium Family of Ionic Liquids K26 Size-control in the Synthesis of Organic Modified Boehmite with High Spect Ratio in Hot-compressed Water Phase Behaviour of the Ternary System April W120 Modeling High-Pressure Phase Behavior of Crude Oil and Impure CO ₂ Mixtures: Effect of Characterization Methods Effect of Oifferent Ionic Liquids as Solvents and Co-Catalysts on the Coupling Reaction between CO ₂ and Epoxides K31 A Quality-by-Design Approach towards the Optimization of Supercritical CO ₂ Spray Drying CO-Carnot Cycle for Waste Heat Utilization K33 Investigation of the CPA EoS in Estimating Density of Deep Eutectic Solvents Size-Control in a Continuous, Pilot-Scale SFE Process K34 Pressure Control in a Continuous, Silo, SBA-15 with Thiol Groups Using Supercritical CO ₂ Sign Macristana Antonous Applications K33 Cleaning of Wine Bottle Cork Stoppers with High Pressure Carbon Dioxide S	PK21 PK22 PK23 PK25 PK26 PK28 PK29 PK30 PK31 PK32 PK33 PK34 PK35 PM01	Solubility in Supercritical Carbon Dioxide Supercritical Extraction from Natural Products: Phase Equilibrium Study of the Ternary System CO2 + H2O + Ethanol at Elevated Pressure High-Pressure Phase Equilibria of the Pseudo-Ternary System Carbon Dioxide + Ethanol + Fish Oil Conception of CO2-phile and Selective Extractants for Supercritical CO2 Extraction of Metals Extended Correlation to Predict High Pressure Solubility of Carbon Dioxide in the 1-Ethyl-3-Methylimidazolium	
PK21 Supercritical Extraction from Natural Products: Phase Equilibrium Study of the Ternary System CO ₂ + H2O + Ethanol at Elevated Pressure PK22 High-Pressure Phase Equilibria of the Pseudo-Ternary System Carbon Dioxide + Ethanol + Fish Oil PK23 Extended Correlation to Predict High Pressure Solubility of Carbon Dioxide in the 1-Ethyl-3-Methylimidazolium Family of Ionic Liquids PK26 Size-control in the Synthesis of Organic Modified Boehmite with High Spect Ratio in Hot-compressed Water PK28 Prediction of Supercritical Carbon Dioxide Impregnation of a Polyurethane Membrane with Borage Oil from Phase Behaviour of the Ternary System PK30 Modeling High-Pressure Phase Behavior of Crude Oil and Impure CO ₂ Mixtures: Effect of Characterization Methods PK30 Effect of Different lonic Liquids as Solvents and Co-Catalysts on the Coupling Reaction between CO ₂ and Epoxides PK31 A Quality-by-Design Approach towards the Optimization of Supercritical CO ₂ Spray Drying PK32 CO ₂ carnot Cycle for Waste Heat Utilization PK33 Investigation of the CPA EoS in Estimating Density of Deep Eutectic Solvents PK34 Pressure Control in a Continuous, Pilot-Scale SFE Process PK35 Studying CO ₂ -philicity by High-pressure Nuclear Magnetic Resonance PM002 Cleaning of Wine Bottle Cork Stoppers with High Pressure Carbon Dioxide PM03	K21 Supercritical Extraction from Natural Products: Phase Equilibrium Study of the Ternary System CO ₂ + H2O + Ethanol at Elevated Pressure Phigh-Pressure Phase Equilibria of the Pseudo-Ternary System Carbon Dioxide + Ethanol + Fish Oil 7 K23 Conception of CO ₂ -phile and Selective Extractants for Supercritical CO ₂ Extraction of Metals 7 K25 Extended Correlation to Predict High Pressure Solubility of Carbon Dioxide in the 1-Ethyl-3-Methylimidazolium Family of lonic Liquids 7 K26 Size-control in the Synthesis of Organic Modified Boehmite with High Spect Ratio in Hot-compressed Water 7 NP abse Behaviour of the Ternary System Prediction of Supercritical Carbon Dioxide Impregnation of a Polyurethane Membrane with Borage Oil from Phase Behaviour of the Ternary System April K29 Modeling High-Pressure Phase Behavior of Crude Oil and Impure CO ₂ Mixtures: Effect of Characterization Methods K2 K21 A Quality-by-beign Approach towards the Optimization of Supercritical CO ₂ Spray Drying K2 K2 CO ₂ Carnot Cycle for Waste Heat Utilization K33 K33 Investigation of the CPA EoS in Estimating Density of Deep Eutectic Solvents K34 K34 Pressure Ontol in a Continuous, Pilot-Scale SFE Process K34 K35 Studying CO ₂ -Philicity by High-pressure Nuclear Magnetic Resonance <td< td=""><td>PK21 PK22 PK23 PK25 PK26 PK28 PK29 PK30 PK31 PK32 PK33 PK34 PK35 PM01</td><td>Supercritical Extraction from Natural Products: Phase Equilibrium Study of the Ternary System CO₂ + H2O + Ethanol at Elevated Pressure High-Pressure Phase Equilibria of the Pseudo-Ternary System Carbon Dioxide + Ethanol + Fish Oil Conception of CO₂-phile and Selective Extractants for Supercritical CO₂ Extraction of Metals Extended Correlation to Predict High Pressure Solubility of Carbon Dioxide in the 1-Ethyl-3-Methylimidazolium</td><td></td></td<>	PK21 PK22 PK23 PK25 PK26 PK28 PK29 PK30 PK31 PK32 PK33 PK34 PK35 PM01	Supercritical Extraction from Natural Products: Phase Equilibrium Study of the Ternary System CO ₂ + H2O + Ethanol at Elevated Pressure High-Pressure Phase Equilibria of the Pseudo-Ternary System Carbon Dioxide + Ethanol + Fish Oil Conception of CO ₂ -phile and Selective Extractants for Supercritical CO ₂ Extraction of Metals Extended Correlation to Predict High Pressure Solubility of Carbon Dioxide in the 1-Ethyl-3-Methylimidazolium	
Ethanol at Elevated Pressure PK22 High-Pressure Phase Equilibria of the Pseudo-Ternary System Carbon Dioxide + Ethanol + Fish Oil PK23 Conception of CO ₂ -phile and Selective Extractants for Supercritical CO ₂ Extraction of Metals PK25 Extended Correlation to Predict High Pressure Solubility of Carbon Dioxide in the 1-Ethyl-3-Methylimidazolium Family of Ionic Liquids PK26 Size-control in the Synthesis of Organic Modified Boehmite with High Spect Ratio in Hot-compressed Water PK28 Prediction of Supercritical Carbon Dioxide Impregnation of a Polyurethane Membrane with Borage Oil from Phase Behaviour of the Ternary System PK29 Modeling High-Pressure Phase Behavior of Crude Oil and Impure CO ₂ Mixtures: Effect of Characterization Methods PK30 Effect of Different Ionic Liquids as Solvents and Co-Catalysts on the Coupling Reaction between CO ₂ and Epoxides PK31 A Quality-by-Design Approach towards the Optimization of Supercritical CO ₂ Spray Drying PK33 Investigation of the CPA EoS in Estimating Density of Deep Eutectic Solvents PK34 Pressure Control in a Continuous, Pilot-Scale SFE Process PK35 Studying CO ₂ -philicity by High-pressure Nuclear Magnetic Resonance PM00 Cleaning of Wine Bottle Cork Stoppers with High Pressure Carbon Dioxide PM002 Cleaning of Wine Bottle Cork Stoppers with High Pressure darbon Dioxide	Ethanol at Elevated Pressure K22 High-Pressure Phase Equilibria of the Pseudo-Ternary System Carbon Dioxide + Ethanol + Fish Oil K23 Conception of CO-phile and Selective Extractants for Supercritical CO. Extraction of Metals K25 Extended Correlation to Predict High Pressure Solubility of Carbon Dioxide in the 1-Ethyl-3-Methylimidazolium Family of Ionic Liquids Prediction of Supercritical Carbon Dioxide Impregnation of a Polyurethane Membrane with Borage Oil from Phase Behaviour of the Ternary System Phase Behaviour of the Ternary System K30 Effect of Different Ionic Liquids as Solvents and Co-Catalysts on the Coupling Reaction between CO ₂ and Epoxides K31 A Quality-by-Design Approach towards the Optimization of Supercritical CO ₂ Spray Drying K32 CO ₂ Cormot Cycle for Waste Heat U tilization K33 Investigation of the CPA EoS in Estimating Density of Deep Eutectic Solvents Not Supercritical Antisolvent Precipitation: Effect of Solvent Type and Concentration on Morphology of Crystalline Particles M02 Cleaning of Wine Bottle Cork Stoppers with High Pressure Carbon Dioxide M03 Functionalization of Meetoyl Methy-ressure Nuclear Magnetic Resonance M03 Functionalization of Meesoporous SiO ₂ SBA-15 with Thiol Groups Using Supercritical CO ₂ M04 Scale Up of Dispersion Polymerisatio	PK22 PK23 PK25 PK26 PK28 PK29 PK30 PK31 PK32 PK33 PK34 PK35 PM01	Ethanol at Elevated Pressure High-Pressure Phase Equilibria of the Pseudo-Ternary System Carbon Dioxide + Ethanol + Fish Oil Conception of CO ₂ -phile and Selective Extractants for Supercritical CO ₂ Extraction of Metals Extended Correlation to Predict High Pressure Solubility of Carbon Dioxide in the 1-Ethyl-3-Methylimidazolium	
PK22 High-Pressure Phase Equilibria of the Pseudo-Ternary System Carbon Dioxide + Ethanol + Fish Oil PK23 Conception of CO-phile and Selective Extractants for Supercritical CO: Extraction of Metals PK26 Extended Correlation to Predict High Pressure Solubility of Carbon Dioxide in the 1-Ethyl-3-Methylimidazolium Family of Ionic Liquids PK26 Size-control in the Synthesis of Organic Modified Boehmite with High Spect Ratio in Hot-compressed Water PK28 Prediction of Supercritical Carbon Dioxide Impregnation of a Polyurethane Membrane with Borage Oil from Phase Behaviour of the Ternary System PK29 Modeling High-Pressure Phase Behavior of Crude Oil and Impure CO ₂ Mixtures: Effect of Characterization Methods PK30 Effect of Different Ionic Liquids as Solvents and Co-Catalysts on the Coupling Reaction between CO ₂ and Epoxides PK31 A Quality-by-Design Approach towards the Optimization of Supercritical CO ₂ Spray Drying PK32 CO ₂ carnot Cycle for Waste Heat Utilization PK33 Investigation of the CPA EoS in Estimating Density of Deep Eutectic Solvents PK34 Pressure Control in a Continuous, Pilot-Scale SFE Process PK43 Supercritical Antisolvent Precipitation: Effect of Solvent Type and Concentration on Morphology of Crystalline Particles PM00 Cleaning of Wine Bottle Cork Stoppers with High Pressure Carbon Dioxide PM03 <td> High-Pressure Phase Equilibria of the Pseudo-Ternary System Carbon Dioxide + Ethanol + Fish Oil Conception of CO₂-phile and Selective Extractants for Supercritical CO₂ Extraction of Metals Extended Correlation to Predict High Pressure Solubility of Carbon Dioxide in the 1-Ethyl-3-Methylimidazolium Family of lonic Liquids Size-control in the Synthesis of Organic Modified Boehmite with High Spect Ratio in Hot-compressed Water Prediction of Supercritical Carbon Dioxide Impregnation of a Polyurethane Membrane with Borage Oil from Phase Behaviour of the Ternary System Modeling High-Pressure Phase Behavior of Crude Oil and Impure CO₂ Mixtures: Effect of Characterization Methods Effect of Different Ionic Liquids as Solvents and Co-Catalysts on the Coupling Reaction between CO₂ and Epoxides A Quality-by-Design Approach towards the Optimization of Supercritical CO₂ Spray Drying CO₂ Carnot Cycle for Waste Heat Utilization Investigation of the CPA EoS in Estimating Density of Deep Eutectic Solvents Prestructional Antisolvent Precipitation: Effect of Solvent Type and Concentration on Morphology of Crystalline Particles Supercritical Antisolvent Precipitation: Effect of Solvent Type and Concentration On Morphology of Crystalline Particles Calaning of Wine Bottle Cork Stoppers with High Pressure Carbon Dioxide Functionalization of Mesoporous SiQ: SBA-15 with Thiol Groups Using Supercritical CO₂ Foaming Cuality by-Desead Aerogel Particles for Biomedical Applications Modeling High-Presside Reaction with Corn Germ Oil and Product Separation Det portical CO₂ Mixtures for the Synthesis of Metal-Organic Frameworks (MOFs) One Pot Enzyme Catalysed Reaction with Corn Germ Oil and Product Separation Effect of ScCO₂ on the Kinetics of Acetylation of Cellulose Using 1-allyl-3-</td> <td>PK22 PK23 PK25 PK26 PK28 PK29 PK30 PK31 PK32 PK33 PK34 PK35</td> <td>High-Pressure Phase Equilibria of the Pseudo-Ternary System Carbon Dioxide + Ethanol + Fish Oil Conception of CO₂-phile and Selective Extractants for Supercritical CO₂ Extraction of Metals Extended Correlation to Predict High Pressure Solubility of Carbon Dioxide in the 1-Ethyl-3-Methylimidazolium</td> <td></td>	 High-Pressure Phase Equilibria of the Pseudo-Ternary System Carbon Dioxide + Ethanol + Fish Oil Conception of CO₂-phile and Selective Extractants for Supercritical CO₂ Extraction of Metals Extended Correlation to Predict High Pressure Solubility of Carbon Dioxide in the 1-Ethyl-3-Methylimidazolium Family of lonic Liquids Size-control in the Synthesis of Organic Modified Boehmite with High Spect Ratio in Hot-compressed Water Prediction of Supercritical Carbon Dioxide Impregnation of a Polyurethane Membrane with Borage Oil from Phase Behaviour of the Ternary System Modeling High-Pressure Phase Behavior of Crude Oil and Impure CO₂ Mixtures: Effect of Characterization Methods Effect of Different Ionic Liquids as Solvents and Co-Catalysts on the Coupling Reaction between CO₂ and Epoxides A Quality-by-Design Approach towards the Optimization of Supercritical CO₂ Spray Drying CO₂ Carnot Cycle for Waste Heat Utilization Investigation of the CPA EoS in Estimating Density of Deep Eutectic Solvents Prestructional Antisolvent Precipitation: Effect of Solvent Type and Concentration on Morphology of Crystalline Particles Supercritical Antisolvent Precipitation: Effect of Solvent Type and Concentration On Morphology of Crystalline Particles Calaning of Wine Bottle Cork Stoppers with High Pressure Carbon Dioxide Functionalization of Mesoporous SiQ: SBA-15 with Thiol Groups Using Supercritical CO₂ Foaming Cuality by-Desead Aerogel Particles for Biomedical Applications Modeling High-Presside Reaction with Corn Germ Oil and Product Separation Det portical CO₂ Mixtures for the Synthesis of Metal-Organic Frameworks (MOFs) One Pot Enzyme Catalysed Reaction with Corn Germ Oil and Product Separation Effect of ScCO₂ on the Kinetics of Acetylation of Cellulose Using 1-allyl-3-	PK22 PK23 PK25 PK26 PK28 PK29 PK30 PK31 PK32 PK33 PK34 PK35	High-Pressure Phase Equilibria of the Pseudo-Ternary System Carbon Dioxide + Ethanol + Fish Oil Conception of CO ₂ -phile and Selective Extractants for Supercritical CO ₂ Extraction of Metals Extended Correlation to Predict High Pressure Solubility of Carbon Dioxide in the 1-Ethyl-3-Methylimidazolium	
PK25 Extended Correlation to Predict High Pressure Solubility of Carbon Dioxide in the 1-Ethyl-3-Methylimidazolium Family of Ionic Liquids PK26 Size-control in the Synthesis of Organic Modified Boehmite with High Spect Ratio in Hot-compressed Water PK28 Prediction of Supercritical Carbon Dioxide Impregnation of a Polyurethane Membrane with Borage Oil from Phase Behaviour of the Ternary System PK29 Modeling High-Pressure Phase Behavior of Crude Oil and Impure CO ₂ Mixtures: Effect of Characterization Methods PK30 Effect of Different Ionic Liquids as Solvents and Co-Catalysts on the Coupling Reaction between CO ₂ and Epoxides PK31 A Quality-by-Design Approach towards the Optimization of Supercritical CO ₂ Spray Drying PK32 CO ₂ Carnot Cycle for Waste Heat Utilization PK34 Pressure Control in a Continuous, Pilot-Scale SFE Process PK35 Studying CO ₂ -philicity by High-pressure Nuclear Magnetic Resonance PM00 Cleaning of Wine Bottle Cork Stoppers with High Pressure Carbon Dioxide PM03 Functionalization of Mesoporous SiO ₂ SBA-15 with Thiol Groups Using Supercritical CO ₂ Foaming PM04 Scale Up of Dispersion Polymerisation of Methyl Methacrylate Synthesis in scCO ₂ PM05 Antimicrobial Properties of Synthetic Bone Scaffolds Prepared by Supercritical CO ₂ Foaming PM04 Scale Up of Dispersion Polymer	K25 Extended Correlation to Predict High Pressure Solubility of Carbon Dioxide in the 1-Ethyl-3-Methylimidazolium Family of Ionic Liquids 27 th K26 Size-control in the Synthesis of Organic Modified Boehmite with High Spect Ratio in Hot-compressed Water 27 th K28 Prediction of Supercritical Carbon Dioxide Impregnation of a Polyurethane Membrane with Borage Oil from Phase Behaviour of the Ternary System April K29 Modeling, High-Pressure Phase Behavior of Crude Oil and Impure CO ₂ Mixtures: Effect of Characterization Methods Effect of Different Ionic Liquids as Solvents and Co-Catalysts on the Coupling Reaction between CO ₂ and Epoxides. K31 A Quality-by-Design Approach towards the Optimization of Supercritical CO ₂ Spray Drying CO ₂ Carnot Cycle for Waste Heat Utilization K33 Investigation of the CPA EoS in Estimating Density of Deep Eutectic Solvents Studying CO ₂ -philicity by High-pressure Nuclear Magnetic Resonance K34 Pressure Control in a Continuous, Pilot-Scale SFE Process Studying CO ₂ -philicity by High-pressure Nuclear Magnetic Resonance K02 Cleaning of Wine Bottle Cork Stoppers with High Pressure Carbon Dioxide Co K03 Functionalization of Mesoporous SiO ₂ SBA-15 with Thiol Groups Using Supercritical CO ₂ Solvent Type and Concentration on Morphology of Crystalline Particles K04 Cale Up of Dispersion Polymeririsation of Methyl Methacrylate	PK25 PK26 PK28 PK29 PK30 PK31 PK32 PK33 PK34 PK35 PM01	Extended Correlation to Predict High Pressure Solubility of Carbon Dioxide in the 1-Ethyl-3-Methylimidazolium	
Family of Ionic LiquidsPK26Size-control in the Synthesis of Organic Modified Boehmite with High Spect Ratio in Hot-compressed WaterPK28Prediction of Supercritical Carbon Dioxide Impregnation of a Polyurethane Membrane with Borage Oil from Phase Behaviour of the Ternary SystemPK29Modeling High-Pressure Phase Behavior of Crude Oil and Impure CO2 Mixtures: Effect of Characterization MethodsPK30Effect of Different Ionic Liquids as Solvents and Co-Catalysts on the Coupling Reaction between CO2 and EpoxidesPK31A Quality-by-Design Approach towards the Optimization of Supercritical CO2 Spray DryingPK32CO2 carnot Cycle for Waste Heat UtilizationPK33Investigation of the CPA EoS in Estimating Density of Deep Eutectic SolventsPK34Pressure Control in a Continuous, Pilot-Scale SFE ProcessPK35Studying CO2-philicity by High-pressure Nuclear Magnetic ResonancePM01Supercritical Antisolvent Precipitation: Effect of Solvent Type and Concentration on Morphology of Crystalline ParticlesPM03Functionalization of Mesoporous SiO2 SBA-15 with Thiol Groups Using Supercritical CO2PM04Scale Up of Dispersion Polymerisation of Methyl Methacrylate Synthesis in scCO2PM05Antimicrobial Properties of Synthetic Bone Scaffolds Prepared by Supercritical CO2 ForamingPM07Ionic Liquid/Supercritical CO2 Mixtures for the Synthesis of Metal-Organic Frameworks (MOFs)PM08One Pot Enzyme Catalysed Reaction with Corn Germ Oil and Product SeparationPM09Effect of scCO2 on the Kinetics of Acetylation of Cellulose Using 1-allyl-3-methylimidazolium chloride as SolventPM11Low-Soluble D	Family of Ionic Liquids 27 th K26 Size-control in the Synthesis of Organic Modified Boehmite with High Spect Ratio in Hot-compressed Water 27 th K27 Prediction of Superritical Carbon Dioxide Impregnation of a Polyurethane Membrane with Borage Oil from Phase Behaviour of the Ternary System April K28 Prediction of Superritical Carbon Dioxide Impregnation of a Polyurethane Membrane with Borage Oil from Methods April K30 Effect of Different Ionic Liquids as Solvents and Co-Catalysts on the Coupling Reaction between CO ₂ and Epoxides AQuality-by-Design Approach towards the Optimization of Supercritical CO ₂ Spray Drying K2 K31 A Quality-by-Design Approach towards the Optimization of Supercritical CO ₂ Spray Drying K32 CO ₂ Carnot Cycle for Waste Heat Utilization K32 CO ₂ Carnot Cycle for Waste Heat Utilization Supercritical Antisolvent Precipitation: Effect of Solvent Type and Concentration on Morphology of Crystalline Particles Particles M02 Cleaning of Wine Bottle Cork Stoppers with High Pressure Carbon Dioxide M04 Stale Up of Dispersion Polymerisation of Methyl Methacrylate Synthesis in scCO ₂ M04 M04 Scale Up of Dispersion Polymerisation of Cellulose Using 1-allyl-3-methylimidazolium chloride as Solvent M04 M05 Tuning the Size of Bio-Based Aerogel Particles for Biomedical Applications M05 M06 <td>PK26 PK28 PK29 PK30 PK31 PK32 PK33 PK34 PK35 PM01</td> <td></td> <td></td>	PK26 PK28 PK29 PK30 PK31 PK32 PK33 PK34 PK35 PM01		
PK28Prediction of Supercritical Carbon Dioxide Impregnation of a Polyurethane Membrane with Borage Oil from Phase Behaviour of the Ternary SystemPK29Modeling High-Pressure Phase Behavior of Crude Oil and Impure CO2 Mixtures: Effect of Characterization MethodsPK30Effect of Different Ionic Liquids as Solvents and Co-Catalysts on the Coupling Reaction between CO2 and EpoxidesPK31A Quality-by-Design Approach towards the Optimization of Supercritical CO2 Spray DryingPK32CO2 carnot Cycle for Waste Heat UtilizationPK33Investigation of the CPA EoS in Estimating Density of Deep Eutectic SolventsPK34Pressure Control in a Continuous, Pilot-Scale SFE ProcessPK35Studying CO2-philicity by High-pressure Nuclear Magnetic ResonancePM01Supercritical Antisolvent Precipitation: Effect of Solvent Type and Concentration on Morphology of Crystalline ParticlesPM03Functionalization of Mesoporous SiO2 SBA-15 with Thiol Groups Using Supercritical CO2 Found Scale Up of Dispersion Polymerisation of Methyl Methacrylate Synthesis in scCO2PM04Scale Up of Dispersion Polymerisation of the Synthesis of Metal-Organic Frameworks (MOFs)PM05Antimicrobial Properties of Synthetic Bone Scaffolds Prepared by Supercritical CO2 FoamingPM06Tuning the Size of Bio-Based Aerogel Particles for Biomedical ApplicationsPM07Ionic Liquid/Supercritical CO2 mixtures for the Synthesis of Metal-Organic Frameworks (MOFs)PM08One Pot Enzyme Catalysed Reaction with Corn Germ Oil and Product SeparationPM09Effect of scCO2 on the Kinetics of Acetylation of Cellulose Using 1-all/1-3-methylimidazolium chloride as Solvent <t< td=""><td>K28 Prediction of Supercritical Carbon Dioxide Impregnation of a Polyurethane Membrane with Borage Oil from Phase Behaviour of the Ternary System April K29 Modeling High-Pressure Phase Behavior of Crude Oil and Impure CO2 Mixtures: Effect of Characterization Methods April K30 Effect of Different Ionic Liquids as Solvents and Co-Catalysts on the Coupling Reaction between CO2 and Epoxides Epoxides K31 A Quality-by-Design Approach towards the Optimization of Supercritical CO2 Spray Drying CO2 Carnot Cycle for Waste Heat Utilization K33 Investigation of the CPA Eos in Estimating Density of Deep Eutectic Solvents Heat Solvents K34 Pressure Control in a Continuous, Pilot-Scale SFE Process Kast Studying CO2-philicity by High-pressure Nuclear Magnetic Resonance Modeling High-Pressure Nuclear Magnetic Resonance M03 Functionalization of Mesoporous SiO2 SBA-15 with Thiol Groups Using Supercritical CO2 Modeling High-Pressure Particles Solvent Type and Concentration on Morphology of Crystalline Particles M05 Antimicrobial Properties of Synthetic Bone Scaffolds Prepared by Supercritical CO2 Modeling High-Pressure Particles for Biomedical Applications M05 Ionic Liquid/Supercritical CO2 Mixtures for the Synthesis of Metal-Organic Frameworks (MOFs) Modeling High Pressure Particles for Biomedical Applications M06 Effect of ScCO2 on the Kinetics of Acetyla</td><td>PK28 PK29 PK30 PK31 PK32 PK33 PK34 PK35 PM01</td><td>Family of Ionic Liquids</td><td></td></t<>	K28 Prediction of Supercritical Carbon Dioxide Impregnation of a Polyurethane Membrane with Borage Oil from Phase Behaviour of the Ternary System April K29 Modeling High-Pressure Phase Behavior of Crude Oil and Impure CO2 Mixtures: Effect of Characterization Methods April K30 Effect of Different Ionic Liquids as Solvents and Co-Catalysts on the Coupling Reaction between CO2 and Epoxides Epoxides K31 A Quality-by-Design Approach towards the Optimization of Supercritical CO2 Spray Drying CO2 Carnot Cycle for Waste Heat Utilization K33 Investigation of the CPA Eos in Estimating Density of Deep Eutectic Solvents Heat Solvents K34 Pressure Control in a Continuous, Pilot-Scale SFE Process Kast Studying CO2-philicity by High-pressure Nuclear Magnetic Resonance Modeling High-Pressure Nuclear Magnetic Resonance M03 Functionalization of Mesoporous SiO2 SBA-15 with Thiol Groups Using Supercritical CO2 Modeling High-Pressure Particles Solvent Type and Concentration on Morphology of Crystalline Particles M05 Antimicrobial Properties of Synthetic Bone Scaffolds Prepared by Supercritical CO2 Modeling High-Pressure Particles for Biomedical Applications M05 Ionic Liquid/Supercritical CO2 Mixtures for the Synthesis of Metal-Organic Frameworks (MOFs) Modeling High Pressure Particles for Biomedical Applications M06 Effect of ScCO2 on the Kinetics of Acetyla	PK28 PK29 PK30 PK31 PK32 PK33 PK34 PK35 PM01	Family of Ionic Liquids	
Phase Behaviour of the Ternary SystemPK29Modeling High-Pressure Phase Behavior of Crude Oil and Impure CO2 Mixtures: Effect of Characterization MethodsPK30Effect of Different Ionic Liquids as Solvents and Co-Catalysts on the Coupling Reaction between CO2 and EpoxidesPK31A Quality-by-Design Approach towards the Optimization of Supercritical CO2 Spray DryingPK32CO2 Carnot Cycle for Waste Heat UtilizationPK33Investigation of the CPA EoS in Estimating Density of Deep Eutectic SolventsPK34Pressure Control in a Continuous, Pilot-Scale SFE ProcessPK35Studying CO2-philicity by High-pressure Nuclear Magnetic ResonancePM01Supercritical Antisolvent Precipitation: Effect of Solvent Type and Concentration on Morphology of Crystalline ParticlesPM02Cleaning of Wine Bottle Cork Stoppers with High Pressure Carbon DioxidePM03Functionalization of Mesoporous SiO2 SBA-15 with Thiol Groups Using Supercritical CO2 PM04Scale Up of Dispersion Polymerisation of Methyl Methacrylate Synthesis in scCO2PM05Antimicrobial Properties of Synthetic Bone Scaffolds Prepared by Supercritical CO2 FoamingPM06Tuning the Size of Bio-Based Aerogel Particles for Biomedical ApplicationsPM07Ionic Liquid/Supercritical CO2 Mixtures for the Synthesis of Metal-Organic Frameworks (MOFs)PM08One Pot Enzyme Catalysed Reaction with Corn Germ Oil and Product SeparationPM10New Insights on Biopolymer Sterilization Using Supercritical CO2: a Potential Alternative Topical Antileisbmanial TreatmentPM14A Comparative Study of Copper(II) Alkanoates-Isonicotinamide Adducts Obtained via Slow Evapora	Phase Behaviour of the Ternary System K29 Modeling High-Pressure Phase Behavior of Crude Oil and Impure CO2 Mixtures: Effect of Characterization Methods K30 Effect of Different Ionic Liquids as Solvents and Co-Catalysts on the Coupling Reaction between CO2 and Epoxides K31 A Quality-by-Design Approach towards the Optimization of Supercritical CO2 Spray Drying K32 CO2 carnot Cycle for Waste Heat Utilization K33 Investigation of the CPA EoS in Estimating Density of Deep Eutectic Solvents K34 Pressure Control in a Continuous, Pilot-Scale SFE Process K35 Studying CO2-philicity by High-pressure Nuclear Magnetic Resonance M001 Supercritical Antisolvent Precipitation: Effect of Solvent Type and Concentration on Morphology of Crystalline Particles M02 Cleaning of Wine Bottle Cork Stoppers with High Pressure Carbon Dioxide M03 Functionalization of Mesoporous SiO2 SBA-15 with Thiol Groups Using Supercritical CO2 M04 Scale Up of Dispersion Polymerisation of Methyl Methacrylate Synthesis in scCO2 M05 Antimicrobial Properties of Synthetic Bone Scaffolds Prepared by Supercritical CO2 Foaming M06 Tuning the Size of Bio-Based Aerogel Particles for Biomedical Applications M07 Ionic Liquid/Supercritical CO2 mixtures for the Synthesis of Metal-Organic Frameworks (MOFs) M08 One P	PK29 PK30 PK31 PK32 PK33 PK34 PK35 PM01	Size-control in the Synthesis of Organic Modified Boehmite with High Spect Ratio in Hot-compressed Water	-
MethodsPK30Effect of Different Ionic Liquids as Solvents and Co-Catalysts on the Coupling Reaction between CO2 and EpoxidesPK31A Quality-by-Design Approach towards the Optimization of Supercritical CO2 Spray DryingPK32CO2 Carnot Cycle for Waste Heat UtilizationPK33Investigation of the CPA EoS in Estimating Density of Deep Eutectic SolventsPK34Pressure Control in a Continuous, Pilot-Scale SFE ProcessPK35Studying CO2-philicity by High-pressure Nuclear Magnetic ResonancePM01Supercritical Antisolvent Precipitation: Effect of Solvent Type and Concentration on Morphology of Crystalline ParticlesPM02Cleaning of Wine Bottle Cork Stoppers with High Pressure Carbon DioxidePM03Functionalization of Mesoporous SiO2 SBA-15 with Thiol Groups Using Supercritical CO2PM04Scale Up of Dispersion Polymerisation of Methyl Methacrylate Synthesis in scCO2PM05Antimicrobial Properties of Synthetic Bone Scaffolds Prepared by Supercritical CO2 FoamingPM06Tuning the Size of Bio-Based Aerogel Particles for Biomedical ApplicationsPM07Ionic Liquid/Supercritical CO2 Mixtures for the Synthesis of Metal-Organic Frameworks (MOFs)PM08One Pot Enzyme Catalysed Reaction with Corn Germ Oil and Product SeparationPM09Effect of scCO2 on the Kinetics of Acetylation of Cellulose Using 1-allyl-3-methylimidazolium chloride as SolventPM10New Insights on Biopolymer Sterilization Using Supercritical CO2: a Potential Alternative Topical Antileishmanial TreatmentPM14A Comparative Study of Copper(II) Alkanoates-Isonicotinamide Adducts Obtained via Slow Evaporation and<	Methods K30 Effect of Different Ionic Liquids as Solvents and Co-Catalysts on the Coupling Reaction between CO2 and Epoxides K31 A Quality-by-Design Approach towards the Optimization of Supercritical CO2 Spray Drying K32 CO2 Carnot Cycle for Waste Heat Utilization K33 Investigation of the CPA EoS in Estimating Density of Deep Eutectic Solvents K34 Pressure Control in a Continuous, Pilot-Scale SFE Process K35 Studying CO2-philicity by High-pressure Ruclear Magnetic Resonance M01 Supercritical Antisolvent Precipitation: Effect of Solvent Type and Concentration on Morphology of Crystalline Particles M02 Cleaning of Wine Bottle Cork Stoppers with High Pressure Carbon Dioxide M03 Functionalization of Mesoporous SiO ₂ SBA-15 with Thiol Groups Using Supercritical CO2 M04 Scale Up of Dispersion Polymerisation of Methyl Methacrylate Synthesis in scCO2 M05 Antimicrobial Properties of Synthetic Bone Scaffolds Prepared by Supercritical CO2 Foaming M06 Tuning the Size of Bio-Based Aerogel Particles for Biomedical Applications M07 Ionic Liquid/Supercritical CO. Mixtures for the Synthesis of Metal-Organic Frameworks (MOFs) M08 One Pot Enzyme Catalysed Reaction with Corn Germ Oil and Product Separation M10 New Insights on Biopolymer Sterilization Using Supercritical CO2: a P	PK30 PK31 PK32 PK33 PK34 PK35 PM01		
EpoxidesPK31A Quality-by-Design Approach towards the Optimization of Supercritical CO2 Spray DryingPK32CO2 Carnot Cycle for Waste Heat UtilizationPK33Investigation of the CPA EoS in Estimating Density of Deep Eutectic SolventsPK34Pressure Control in a Continuous, Pilot-Scale SFE ProcessPK35Studying CO2-philicity by High-pressure Nuclear Magnetic ResonancePM01Supercritical Antisolvent Precipitation: Effect of Solvent Type and Concentration on Morphology of Crystalline ParticlesPM02Cleaning of Wine Bottle Cork Stoppers with High Pressure Carbon DioxidePM03Functionalization of Mesoporous SiO2 SBA-15 with Thiol Groups Using Supercritical CO2PM04Scale Up of Dispersion Polymerisation of Methyl Methacrylate Synthesis in scCO2PM05Antimicrobial Properties of Synthetic Bone Scaffolds Prepared by Supercritical CO2 FoamingPM06Tuning the Size of Bio-Based Aerogel Particles for Biomedical ApplicationsPM07Ionic Liquid/Supercritical CO2 on the Kinetics of Acetylation of Cellulose Using 1-allyl-3-methylimidazolium chloride as SolventPM10New Insights on Biopolymer Sterilization Using Supercritical CO2PM11Low-Soluble Drugs Release from Bio-AerogelsPM12PLA Functionalization via Click Chemistry at Supercritical CO2: a Potential Alternative Topical Antileishmanial TreatmentPM14A Comparative Study of Copper(II) Alkanoates-Isonicotinamide Adducts Obtained via Slow Evaporation and	Epoxides K31 A Quality-by-Design Approach towards the Optimization of Supercritical CO ₂ Spray Drying K32 CO: Carnot Cycle for Waste Heat Utilization K33 Investigation of the CPA EoS in Estimating Density of Deep Eutectic Solvents K34 Pressure Control in a Continuous, Pilot-Scale SFE Process K35 Studying CO ₂ -philicity by High-pressure Nuclear Magnetic Resonance M01 Supercritical Antisolvent Precipitation: Effect of Solvent Type and Concentration on Morphology of Crystalline Particles M02 Cleaning of Wine Bottle Cork Stoppers with High Pressure Carbon Dioxide M03 Functionalization of Mesoporous SiO ₂ SBA-15 with Thiol Groups Using Supercritical CO ₂ M04 Scale Up of Dispersion Polymerisation of Methyl Methacrylate Synthesis in scCO ₂ M05 Antimicrobial Properties of Synthetic Bone Scaffolds Prepared by Supercritical CO ₂ Foaming M06 Tuning the Size of Bio-Based Aerogel Particles for Biomedical Applications M07 Ionic Liquid/Supercritical CO ₂ Mixtures for the Synthesis of Metal-Organic Frameworks (MOFs) M08 One Pot Enzyme Catalysed Reaction with Corn Germ Oil and Product Separation M10 New Insights on Biopolymer Sterilization Using Supercritical CO ₂ : a Potential Alternative Topical Antileishmanial Treatment M11 Low-Soluble Drugs Release from Bio-Aerogels	PK31 PK32 PK33 PK34 PK35 PM01		
PK31A Quality-by-Design Approach towards the Optimization of Supercritical CO2 Spray DryingPK32CO2 Carnot Cycle for Waste Heat UtilizationPK33Investigation of the CPA EoS in Estimating Density of Deep Eutectic SolventsPK34Pressure Control in a Continuous, Pilot-Scale SFE ProcessPK35Studying CO2-philicity by High-pressure Nuclear Magnetic ResonancePM01Supercritical Antisolvent Precipitation: Effect of Solvent Type and Concentration on Morphology of Crystalline ParticlesPM02Cleaning of Wine Bottle Cork Stoppers with High Pressure Carbon DioxidePM03Functionalization of Mesoporous SiO2 SBA-15 with Thiol Groups Using Supercritical CO2 PM04Scale Up of Dispersion Polymerisation of Methyl Methacrylate Synthesis in scCO2PM05Antimicrobial Properties of Synthetic Bone Scaffolds Prepared by Supercritical CO2 FoamingPM06Tuning the Size of Bio-Based Aerogel Particles for Biomedical ApplicationsPM07Ionic Liquid/Supercritical CO2 Mixtures for the Synthesis of Metal-Organic Frameworks (MOFs)PM08One Pot Enzyme Catalysed Reaction with Corn Germ Oil and Product SeparationPM09Effect of scCO2 on the Kinetics of Acetylation of Cellulose Using 1-allyl-3-methylimidazolium chloride as SolventPM11Low-Soluble Drugs Release from Bio-AerogelsPM12PLA Functionalization via Click Chemistry at Supercritical CO2: a Potential Alternative Topical Antileishmanial TreatmentPM14A Comparative Study of Copper(II) Alkanoates-Isonicotinamide Adducts Obtained via Slow Evaporation and	A Quality-by-Design Approach towards the Optimization of Supercritical CO ₂ Spray Drying K32 CO ₂ Carnot Cycle for Waste Heat Utilization K33 Investigation of the CPA EoS in Estimating Density of Deep Eutectic Solvents K34 Pressure Control in a Continuous, Pilot-Scale SFE Process K35 Studying CO ₂ -philicity by High-pressure Nuclear Magnetic Resonance M01 Supercritical Antisolvent Precipitation: Effect of Solvent Type and Concentration on Morphology of Crystalline Particles M02 Cleaning of Wine Bottle Cork Stoppers with High Pressure Carbon Dioxide M03 Functionalization of Mesoporous SiO ₂ SBA-15 with Thiol Groups Using Supercritical CO ₂ M04 Scale Up of Dispersion Polymerisation of Methyl Methacrylate Synthesis in scCO ₂ M05 Antimicrobial Properties of Synthetic Bone Scaffolds Prepared by Supercritical CO ₂ Foaming M06 Tuning the Size of Bio-Based Aerogel Particles for Biomedical Applications M09 Effect of scCO ₂ on the Kinetics of Acetylation of Cellulose Using 1-allyl-3-methylimidazolium chloride as Solvent M10 New Insights on Biopolymer Sterilization Using Supercritical CO ₂ : a Potential Alternative Topical Antileishmanial Treatment M14 A Comparative Study of Copper(II) Alkanoates-Isonicotinamide Adducts Obtained via Slow Evaporation and Using Supercritical CO ₂ as An Antisolvent M11 Dytimizatio	PK31 PK32 PK33 PK34 PK35 PM01		
PK33Investigation of the CPA EoS in Estimating Density of Deep Eutectic SolventsPK34Pressure Control in a Continuous, Pilot-Scale SFE ProcessPK35Studying CO2-philicity by High-pressure Nuclear Magnetic ResonancePM01Supercritical Antisolvent Precipitation: Effect of Solvent Type and Concentration on Morphology of Crystalline ParticlesPM02Cleaning of Wine Bottle Cork Stoppers with High Pressure Carbon DioxidePM03Functionalization of Mesoporous SiO2 SBA-15 with Thiol Groups Using Supercritical CO2PM04Scale Up of Dispersion Polymerisation of Methyl Methacrylate Synthesis in scCO2PM05Antimicrobial Properties of Synthetic Bone Scaffolds Prepared by Supercritical CO2 FoamingPM06Tuning the Size of Bio-Based Aerogel Particles for Biomedical ApplicationsPM07Ionic Liquid/Supercritical CO2 Mixtures for the Synthesis of Metal-Organic Frameworks (MOFs)PM08One Pot Enzyme Catalysed Reaction with Corn Germ Oil and Product SeparationPM09Effect of scCO2 on the Kinetics of Acetylation of Cellulose Using 1-allyl-3-methylimidazolium chloride as SolventPM10New Insights on Biopolymer Sterilization Using Supercritical CO2 TechnologyPM11Low-Soluble Drugs Release from Bio-AerogelsPM12PLA Functionalization via Click Chemistry at Supercritical ConditionsPM13Copaiba Oil-loaded Commercial Wound Dressings Using Supercritical CO2: a Potential Alternative Topical Antileishmanial TreatmentPM14A Comparative Study of Copper(II) Alkanoates-Isonicotinamide Adducts Obtained via Slow Evaporation and	K33 Investigation of the CPA EoS in Estimating Density of Deep Eutectic Solvents K34 Pressure Control in a Continuous, Pilot-Scale SFE Process K35 Studying CO2-philicity by High-pressure Nuclear Magnetic Resonance M01 Supercritical Antisolvent Precipitation: Effect of Solvent Type and Concentration on Morphology of Crystalline Particles M02 Cleaning of Wine Bottle Cork Stoppers with High Pressure Carbon Dioxide M03 Functionalization of Mesoporous SiO ₂ SBA-15 with Thiol Groups Using Supercritical CO ₂ M04 Scale Up of Dispersion Polymerisation of Methyl Methacrylate Synthesis in scCO ₂ M05 Antimicrobial Properties of Synthetic Bone Scaffolds Prepared by Supercritical CO ₂ Foaming M06 Tuning the Size of Bio-Based Aerogel Particles for Biomedical Applications M07 Ionic Liquid/Supercritical CO ₂ Mixtures for the Synthesis of Metal-Organic Frameworks (MOFs) M08 One Pot Enzyme Catalysed Reaction with Corn Germ Oil and Product Separation M101 Low-Soluble Drugs Release from Bio-Aerogels M11 Low-Soluble Drugs Release from Bio-Aerogels M12 PLA Functionalization via Click Chemistry at Supercritical CO ₂ : a Potential Alternative Topical Antileishmanial Treatment M14 A Comparative Study of Copper(II) Alkanoates-Isonicotinamide Adducts Obtained via Slow Evaporation and Using Supercritical CO ₂ as An	PK33 PK34 PK35 PM01	A Quality-by-Design Approach towards the Optimization of Supercritical CO ₂ Spray Drying	
PK34Pressure Control in a Continuous, Pilot-Scale SFE ProcessPK35Studying CO2-philicity by High-pressure Nuclear Magnetic ResonancePM01Supercritical Antisolvent Precipitation: Effect of Solvent Type and Concentration on Morphology of Crystalline ParticlesPM02Cleaning of Wine Bottle Cork Stoppers with High Pressure Carbon DioxidePM03Functionalization of Mesoporous SiO2 SBA-15 with Thiol Groups Using Supercritical CO2PM04Scale Up of Dispersion Polymerisation of Methyl Methacrylate Synthesis in scCO2PM05Antimicrobial Properties of Synthetic Bone Scaffolds Prepared by Supercritical CO2 FoamingPM06Tuning the Size of Bio-Based Aerogel Particles for Biomedical ApplicationsPM07Ionic Liquid/Supercritical CO2 Mixtures for the Synthesis of Metal-Organic Frameworks (MOFs)PM08One Pot Enzyme Catalysed Reaction with Corn Germ Oil and Product SeparationPM10New Insights on Biopolymer Sterilization Using Supercritical CO2 TechnologyPM11Low-Soluble Drugs Release from Bio-AerogelsPM12PLA Functionalization via Click Chemistry at Supercritical ConditionsPM13Copaiba Oil-loaded Commercial Wound Dressings Using Supercritical CO2: a Potential Alternative Topical Antileishmanial TreatmentPM14A Comparative Study of Copper(II) Alkanoates-Isonicotinamide Adducts Obtained via Slow Evaporation and	K34 Pressure Control in a Continuous, Pilot-Scale SFE Process K35 Studying CO2-philicity by High-pressure Nuclear Magnetic Resonance M01 Supercritical Antisolvent Precipitation: Effect of Solvent Type and Concentration on Morphology of Crystalline Particles M02 Cleaning of Wine Bottle Cork Stoppers with High Pressure Carbon Dioxide M03 Functionalization of Mesoporous SiO ₂ SBA-15 with Thiol Groups Using Supercritical CO ₂ M04 Scale Up of Dispersion Polymerisation of Methyl Methacrylate Synthesis in scCO ₂ M05 Antimicrobial Properties of Synthetic Bone Scaffolds Prepared by Supercritical CO ₂ Foaming M06 Tuning the Size of Bio-Based Aerogel Particles for Biomedical Applications M07 Ionic Liquid/Supercritical CO ₂ Mixtures for the Synthesis of Metal-Organic Frameworks (MOFs) M08 One Pot Enzyme Catalysed Reaction with Corn Germ Oil and Product Separation M10 New Insights on Biopolymer Sterilization Using Supercritical CO ₂ technology M11 Low-Soluble Drugs Release from Bio-Aerogels M11 Copaiba Oil-loaded Commercial Wound Dressings Using Supercritical CO ₂ : a Potential Alternative Topical Antileishmanial Treatment M14 A Comparative Study of Copper(II) Alkanoates-Isonicotinamide Adducts Obtained via Slow Evaporation and Using Supercritical CO ₂ as An Antisolvent M15 Optimization of Subcritic	PK34 PK35 PM01	CO ₂ Carnot Cycle for Waste Heat Utilization	
PK35Studying CO2-philicity by High-pressure Nuclear Magnetic ResonancePM01Supercritical Antisolvent Precipitation: Effect of Solvent Type and Concentration on Morphology of Crystalline ParticlesPM02Cleaning of Wine Bottle Cork Stoppers with High Pressure Carbon DioxidePM03Functionalization of Mesoporous SiO2 SBA-15 with Thiol Groups Using Supercritical CO2PM04Scale Up of Dispersion Polymerisation of Methyl Methacrylate Synthesis in scCO2PM05Antimicrobial Properties of Synthetic Bone Scaffolds Prepared by Supercritical CO2 FoamingPM06Tuning the Size of Bio-Based Aerogel Particles for Biomedical ApplicationsPM07Ionic Liquid/Supercritical CO2 Mixtures for the Synthesis of Metal-Organic Frameworks (MOFs)PM08One Pot Enzyme Catalysed Reaction with Corn Germ Oil and Product SeparationPM09Effect of scCO2 on the Kinetics of Acetylation of Cellulose Using 1-allyl-3-methylimidazolium chloride as SolventPM10New Insights on Biopolymer Sterilization Using Supercritical CO2 TechnologyPM11Low-Soluble Drugs Release from Bio-AerogelsPM12PLA Functionalization via Click Chemistry at Supercritical CO2: a Potential Alternative Topical Antileishmanial TreatmentPM14A Comparative Study of Copper(II) Alkanoates-Isonicotinamide Adducts Obtained via Slow Evaporation and	K35 Studying CO2-philicity by High-pressure Nuclear Magnetic Resonance M01 Supercritical Antisolvent Precipitation: Effect of Solvent Type and Concentration on Morphology of Crystalline Particles M02 Cleaning of Wine Bottle Cork Stoppers with High Pressure Carbon Dioxide M03 Functionalization of Mesoporous SiO ₂ SBA-15 with Thiol Groups Using Supercritical CO2 M04 Scale Up of Dispersion Polymerisation of Methyl Methacrylate Synthesis in scCO2 M05 Antimicrobial Properties of Synthetic Bone Scaffolds Prepared by Supercritical CO2 Foaming M06 Tuning the Size of Bio-Based Aerogel Particles for Biomedical Applications M07 Ionic Liquid/Supercritical CO ₂ Mixtures for the Synthesis of Metal-Organic Frameworks (MOFs) M08 One Pot Enzyme Catalysed Reaction with Corn Germ Oil and Product Separation M101 New Insights on Biopolymer Sterilization Using Supercritical CO2 Technology M11 Low-Soluble Drugs Release from Bio-Aerogels M12 PLA Functionalization via Click Chemistry at Supercritical Conditions M13 Copaiba Oil-loaded Commercial Wound Dressings Using Supercritical CO2: a Potential Alternative Topical Antileishmanial Treatment M14 A Comparative Study of Copper(II) Alkanoates-Isonicotinamide Adducts Obtained via Slow Evaporation and Using Supercritical CO2 as An Antisolvent M15 Optimization of Subcriti	PK35 PM01	Investigation of the CPA EoS in Estimating Density of Deep Eutectic Solvents	
PM01Supercritical Antisolvent Precipitation: Effect of Solvent Type and Concentration on Morphology of Crystalline ParticlesPM02Cleaning of Wine Bottle Cork Stoppers with High Pressure Carbon DioxidePM03Functionalization of Mesoporous SiO2 SBA-15 with Thiol Groups Using Supercritical CO2PM04Scale Up of Dispersion Polymerisation of Methyl Methacrylate Synthesis in scCO2PM05Antimicrobial Properties of Synthetic Bone Scaffolds Prepared by Supercritical CO2 FoamingPM06Tuning the Size of Bio-Based Aerogel Particles for Biomedical ApplicationsPM07Ionic Liquid/Supercritical CO2 Mixtures for the Synthesis of Metal-Organic Frameworks (MOFs)PM08One Pot Enzyme Catalysed Reaction with Corn Germ Oil and Product SeparationPM09Effect of scCO2 on the Kinetics of Acetylation of Cellulose Using 1-allyl-3-methylimidazolium chloride as SolventPM10New Insights on Biopolymer Sterilization Using Supercritical CO2 TechnologyPM11Low-Soluble Drugs Release from Bio-AerogelsPM12PLA Functionalization via Click Chemistry at Supercritical CO2: a Potential Alternative Topical Antileishmanial TreatmentPM14A Comparative Study of Copper(II) Alkanoates-Isonicotinamide Adducts Obtained via Slow Evaporation and	M01 Supercritical Antisolvent Precipitation: Effect of Solvent Type and Concentration on Morphology of Crystalline Particles M02 Cleaning of Wine Bottle Cork Stoppers with High Pressure Carbon Dioxide M03 Functionalization of Mesoporous SiO ₂ SBA-15 with Thiol Groups Using Supercritical CO ₂ M04 Scale Up of Dispersion Polymerisation of Methyl Methacrylate Synthesis in scCO ₂ M05 Antimicrobial Properties of Synthetic Bone Scaffolds Prepared by Supercritical CO ₂ Foaming M06 Tuning the Size of Bio-Based Aerogel Particles for Biomedical Applications M07 Ionic Liquid/Supercritical CO ₂ Mixtures for the Synthesis of Metal-Organic Frameworks (MOFs) M08 One Pot Enzyme Catalysed Reaction with Corn Germ Oil and Product Separation M09 Effect of scCO ₂ on the Kinetics of Acetylation of Cellulose Using 1-allyl-3-methylimidazolium chloride as Solvent M10 New Insights on Biopolymer Sterilization Using Supercritical CO ₂ : a Potential Alternative Topical Antileishmanial Treatment M14 A Comparative Study of Copper(II) Alkanoates-Isonicotinamide Adducts Obtained via Slow Evaporation and Using Supercritical CO ₂ as An Antisolvent M15 Optimization of Subcritical Water Processing of Zr0.1Ti0.9On and Its Effect on Microstructural Properties M14 Esterification of Isoamyl Alcohol by Immobilized Lipase in Supercritical CO ₂ M18 Esterification of Isoamyl Alc	PM01	Pressure Control in a Continuous, Pilot-Scale SFE Process	
ParticlesPM02Cleaning of Wine Bottle Cork Stoppers with High Pressure Carbon DioxidePM03Functionalization of Mesoporous SiO2 SBA-15 with Thiol Groups Using Supercritical CO2PM04Scale Up of Dispersion Polymerisation of Methyl Methacrylate Synthesis in scCO2PM05Antimicrobial Properties of Synthetic Bone Scaffolds Prepared by Supercritical CO2 FoamingPM06Tuning the Size of Bio-Based Aerogel Particles for Biomedical ApplicationsPM07Ionic Liquid/Supercritical CO2 Mixtures for the Synthesis of Metal-Organic Frameworks (MOFs)PM08One Pot Enzyme Catalysed Reaction with Corn Germ Oil and Product SeparationPM10Effect of scCO2 on the Kinetics of Acetylation of Cellulose Using 1-allyl-3-methylimidazolium chloride as SolventPM10New Insights on Biopolymer Sterilization Using Supercritical CO2 TechnologyPM11Low-Soluble Drugs Release from Bio-AerogelsPM12PLA Functionalization via Click Chemistry at Supercritical CoditionsPM13Copaiba Oil-loaded Commercial Wound Dressings Using Supercritical CO2: a Potential Alternative Topical Antileishmanial TreatmentPM14A Comparative Study of Copper(II) Alkanoates-Isonicotinamide Adducts Obtained via Slow Evaporation and	ParticlesM02Cleaning of Wine Bottle Cork Stoppers with High Pressure Carbon DioxideM03Functionalization of Mesoporous SiQ SBA-15 with Thiol Groups Using Supercritical CO2M04Scale Up of Dispersion Polymerisation of Methyl Methacrylate Synthesis in scCO2M05Antimicrobial Properties of Synthetic Bone Scaffolds Prepared by Supercritical CO2 FoamingM06Tuning the Size of Bio-Based Aerogel Particles for Biomedical ApplicationsM07Ionic Liquid/Supercritical CO2 Mixtures for the Synthesis of Metal-Organic Frameworks (MOFs)M08One Pot Enzyme Catalysed Reaction with Corn Germ Oil and Product SeparationM09Effect of scCO2 on the Kinetics of Acetylation of Cellulose Using 1-allyl-3-methylimidazolium chloride as SolventM10New Insights on Biopolymer Sterilization Using Supercritical CO2 TechnologyM11Low-Soluble Drugs Release from Bio-AerogelsM12PLA Functionalization via Click Chemistry at Supercritical ConditionsM13Copaiba Oil-loaded Commercial Wound Dressings Using Supercritical CO2: a Potential Alternative Topical Antileishmanial TreatmentM14A Comparative Study of Copper(II) Alkanoates-Isonicotinamide Adducts Obtained via Slow Evaporation and Using Supercritical CO2 as An AntisolventM15Optimization of Subcritical Water Processing of Zr0.1Ti0.9On and Its Effect on Microstructural PropertiesM18Esterification of Isoamyl Alcohol by Immobilized Lipase in Supercritical CO2M19Non-invasive Determination of Transport Properties and Solubilities for (Compressed CO2)/Polyol-mixtures			
PM03Functionalization of Mesoporous SiO2 SBA-15 with Thiol Groups Using Supercritical CO2PM04Scale Up of Dispersion Polymerisation of Methyl Methacrylate Synthesis in scCO2PM05Antimicrobial Properties of Synthetic Bone Scaffolds Prepared by Supercritical CO2 FoamingPM06Tuning the Size of Bio-Based Aerogel Particles for Biomedical ApplicationsPM07Ionic Liquid/Supercritical CO2 Mixtures for the Synthesis of Metal-Organic Frameworks (MOFs)PM08One Pot Enzyme Catalysed Reaction with Corn Germ Oil and Product SeparationPM09Effect of scCO2 on the Kinetics of Acetylation of Cellulose Using 1-allyl-3-methylimidazolium chloride as SolventPM10New Insights on Biopolymer Sterilization Using Supercritical CO2 TechnologyPM11Low-Soluble Drugs Release from Bio-AerogelsPM12PLA Functionalization via Click Chemistry at Supercritical CO2: a Potential Alternative Topical Antileishmanial TreatmentPM14A Comparative Study of Copper(II) Alkanoates-Isonicotinamide Adducts Obtained via Slow Evaporation and	M03Functionalization of Mesoporous SiO2 SBA-15 with Thiol Groups Using Supercritical CO2M04Scale Up of Dispersion Polymerisation of Methyl Methacrylate Synthesis in scCO2M05Antimicrobial Properties of Synthetic Bone Scaffolds Prepared by Supercritical CO2 FoamingM06Tuning the Size of Bio-Based Aerogel Particles for Biomedical ApplicationsM07Ionic Liquid/Supercritical CO2 Mixtures for the Synthesis of Metal-Organic Frameworks (MOFs)M08One Pot Enzyme Catalysed Reaction with Corn Germ Oil and Product SeparationM09Effect of scCO2 on the Kinetics of Acetylation of Cellulose Using 1-allyl-3-methylimidazolium chloride as SolventM10New Insights on Biopolymer Sterilization Using Supercritical CO2 TechnologyM11Low-Soluble Drugs Release from Bio-AerogelsM12PLA Functionalization via Click Chemistry at Supercritical Co12: a Potential Alternative Topical Antileishmanial TreatmentM14A Comparative Study of Copper(II) Alkanoates-Isonicotinamide Adducts Obtained via Slow Evaporation and Using Supercritical CO2 as An AntisolventM15Optimization of Subcritical Water Processing of Zr0.1Ti0.9On and Its Effect on Microstructural PropertiesM18Esterification of Isoamyl Alcohol by Immobilized Lipase in Supercritical CO2M19Non-invasive Determination of Transport Properties and Solubilities for (Compressed CO2)/Polyol-mixtures			
PM04Scale Up of Dispersion Polymerisation of Methyl Methacrylate Synthesis in scCO2PM05Antimicrobial Properties of Synthetic Bone Scaffolds Prepared by Supercritical CO2 FoamingPM06Tuning the Size of Bio-Based Aerogel Particles for Biomedical ApplicationsPM07Ionic Liquid/Supercritical CO2 Mixtures for the Synthesis of Metal-Organic Frameworks (MOFs)PM08One Pot Enzyme Catalysed Reaction with Corn Germ Oil and Product SeparationPM09Effect of scCO2 on the Kinetics of Acetylation of Cellulose Using 1-allyl-3-methylimidazolium chloride as SolventPM10New Insights on Biopolymer Sterilization Using Supercritical CO2 TechnologyPM11Low-Soluble Drugs Release from Bio-AerogelsPM12PLA Functionalization via Click Chemistry at Supercritical ConditionsPM13Copaiba Oil-loaded Commercial Wound Dressings Using Supercritical CO2: a Potential Alternative Topical Antileishmanial TreatmentPM14A Comparative Study of Copper(II) Alkanoates-Isonicotinamide Adducts Obtained via Slow Evaporation and	M04Scale Up of Dispersion Polymerisation of Methyl Methacrylate Synthesis in scCO2M05Antimicrobial Properties of Synthetic Bone Scaffolds Prepared by Supercritical CO2 FoamingM06Tuning the Size of Bio-Based Aerogel Particles for Biomedical ApplicationsM07Ionic Liquid/Supercritical CO2 Mixtures for the Synthesis of Metal-Organic Frameworks (MOFs)M08One Pot Enzyme Catalysed Reaction with Corn Germ Oil and Product SeparationM09Effect of scCO2 on the Kinetics of Acetylation of Cellulose Using 1-allyl-3-methylimidazolium chloride as SolventM10New Insights on Biopolymer Sterilization Using Supercritical CO2 TechnologyM11Low-Soluble Drugs Release from Bio-AerogelsM12PLA Functionalization via Click Chemistry at Supercritical ConditionsM13Copaiba Oil-loaded Commercial Wound Dressings Using Supercritical CO2: a Potential Alternative Topical Antileishmanial TreatmentM14A Comparative Study of Copper(II) Alkanoates-Isonicotinamide Adducts Obtained via Slow Evaporation and Using Supercritical CO2 as An AntisolventM15Optimization of Subcritical Water Processing of Zr0.1Ti0.9On and Its Effect on Microstructural PropertiesM18Esterification of Isoamyl Alcohol by Immobilized Lipase in Supercritical CO2M19Non-invasive Determination of Transport Properties and Solubilities for (Compressed CO2)/Polyol-mixtures			
PM05Antimicrobial Properties of Synthetic Bone Scaffolds Prepared by Supercritical CO2 FoamingPM06Tuning the Size of Bio-Based Aerogel Particles for Biomedical ApplicationsPM07Ionic Liquid/Supercritical CO2 Mixtures for the Synthesis of Metal-Organic Frameworks (MOFs)PM08One Pot Enzyme Catalysed Reaction with Corn Germ Oil and Product SeparationPM09Effect of scCO2 on the Kinetics of Acetylation of Cellulose Using 1-allyl-3-methylimidazolium chloride as SolventPM10New Insights on Biopolymer Sterilization Using Supercritical CO2 TechnologyPM11Low-Soluble Drugs Release from Bio-AerogelsPM12PLA Functionalization via Click Chemistry at Supercritical ConditionsPM13Copaiba Oil-loaded Commercial Wound Dressings Using Supercritical CO2: a Potential Alternative Topical Antileishmanial TreatmentPM14A Comparative Study of Copper(II) Alkanoates-Isonicotinamide Adducts Obtained via Slow Evaporation and	M05Antimicrobial Properties of Synthetic Bone Scaffolds Prepared by Supercritical CO2 FoamingM06Tuning the Size of Bio-Based Aerogel Particles for Biomedical ApplicationsM07Ionic Liquid/Supercritical CO2 Mixtures for the Synthesis of Metal-Organic Frameworks (MOFs)M08One Pot Enzyme Catalysed Reaction with Corn Germ Oil and Product SeparationM09Effect of scCO2 on the Kinetics of Acetylation of Cellulose Using 1-allyl-3-methylimidazolium chloride as SolventM10New Insights on Biopolymer Sterilization Using Supercritical CO2 TechnologyM11Low-Soluble Drugs Release from Bio-AerogelsM12PLA Functionalization via Click Chemistry at Supercritical ConditionsM13Copaiba Oil-loaded Commercial Wound Dressings Using Supercritical CO2: a Potential Alternative Topical Antileishmanial TreatmentM14A Comparative Study of Copper(II) Alkanoates-Isonicotinamide Adducts Obtained via Slow Evaporation and Using Supercritical CO2 as An AntisolventM15Optimization of Subcritical Water Processing of Zr0.1Ti0.9On and Its Effect on Microstructural PropertiesM18Esterification of Isoamyl Alcohol by Immobilized Lipase in Supercritical CO2M19Non-invasive Determination of Transport Properties and Solubilities for (Compressed CO2)/Polyol-mixtures			
PM06Tuning the Size of Bio-Based Aerogel Particles for Biomedical ApplicationsPM07Ionic Liquid/Supercritical CO2 Mixtures for the Synthesis of Metal-Organic Frameworks (MOFs)PM08One Pot Enzyme Catalysed Reaction with Corn Germ Oil and Product SeparationPM09Effect of scCO2 on the Kinetics of Acetylation of Cellulose Using 1-allyl-3-methylimidazolium chloride as SolventPM10New Insights on Biopolymer Sterilization Using Supercritical CO2 TechnologyPM11Low-Soluble Drugs Release from Bio-AerogelsPM12PLA Functionalization via Click Chemistry at Supercritical ConditionsPM13Copaiba Oil-loaded Commercial Wound Dressings Using Supercritical CO2: a Potential Alternative Topical Antileishmanial TreatmentPM14A Comparative Study of Copper(II) Alkanoates-Isonicotinamide Adducts Obtained via Slow Evaporation and	M06Tuning the Size of Bio-Based Aerogel Particles for Biomedical ApplicationsM07Ionic Liquid/Supercritical CO2 Mixtures for the Synthesis of Metal-Organic Frameworks (MOFs)M08One Pot Enzyme Catalysed Reaction with Corn Germ Oil and Product SeparationM09Effect of scCO2 on the Kinetics of Acetylation of Cellulose Using 1-allyl-3-methylimidazolium chloride as SolventM10New Insights on Biopolymer Sterilization Using Supercritical CO2 TechnologyM11Low-Soluble Drugs Release from Bio-AerogelsM12PLA Functionalization via Click Chemistry at Supercritical ConditionsM13Copaiba Oil-loaded Commercial Wound Dressings Using Supercritical CO2: a Potential Alternative Topical Antileishmanial TreatmentM14A Comparative Study of Copper(II) Alkanoates-Isonicotinamide Adducts Obtained via Slow Evaporation and Using Supercritical CO2 as An AntisolventM15Optimization of Subcritical Water Processing of Zr0.1Ti0.9On and Its Effect on Microstructural PropertiesM18Esterification of Isoamyl Alcohol by Immobilized Lipase in Supercritical CO2M19Non-invasive Determination of Transport Properties and Solubilities for (Compressed CO2)/Polyol-mixtures			
PM07Ionic Liquid/Supercritical CO2 Mixtures for the Synthesis of Metal-Organic Frameworks (MOFs)PM08One Pot Enzyme Catalysed Reaction with Corn Germ Oil and Product SeparationPM09Effect of scCO2 on the Kinetics of Acetylation of Cellulose Using 1-allyl-3-methylimidazolium chloride as SolventPM10New Insights on Biopolymer Sterilization Using Supercritical CO2 TechnologyPM11Low-Soluble Drugs Release from Bio-AerogelsPM12PLA Functionalization via Click Chemistry at Supercritical ConditionsPM13Copaiba Oil-loaded Commercial Wound Dressings Using Supercritical CO2: a Potential Alternative Topical Antileishmanial TreatmentPM14A Comparative Study of Copper(II) Alkanoates-Isonicotinamide Adducts Obtained via Slow Evaporation and	 M07 Ionic Liquid/Supercritical CO₂ Mixtures for the Synthesis of Metal-Organic Frameworks (MOFs) M08 One Pot Enzyme Catalysed Reaction with Corn Germ Oil and Product Separation M09 Effect of scCO₂ on the Kinetics of Acetylation of Cellulose Using 1-allyl-3-methylimidazolium chloride as Solvent M10 New Insights on Biopolymer Sterilization Using Supercritical CO₂ Technology M11 Low-Soluble Drugs Release from Bio-Aerogels M12 PLA Functionalization via Click Chemistry at Supercritical Conditions M13 Copaiba Oil-loaded Commercial Wound Dressings Using Supercritical CO₂: a Potential Alternative Topical Antileishmanial Treatment M14 A Comparative Study of Copper(II) Alkanoates-Isonicotinamide Adducts Obtained via Slow Evaporation and Using Supercritical CO₂ as An Antisolvent M15 Optimization of Subcritical Water Processing of Zr0.1Ti0.9On and Its Effect on Microstructural Properties M18 Esterification of Isoamyl Alcohol by Immobilized Lipase in Supercritical CO₂ M19 Non-invasive Determination of Transport Properties and Solubilities for (Compressed CO₂)/Polyol-mixtures 			
PM08 One Pot Enzyme Catalysed Reaction with Corn Germ Oil and Product Separation PM09 Effect of scCO2 on the Kinetics of Acetylation of Cellulose Using 1-allyl-3-methylimidazolium chloride as Solvent PM10 New Insights on Biopolymer Sterilization Using Supercritical CO2 Technology PM11 Low-Soluble Drugs Release from Bio-Aerogels PM12 PLA Functionalization via Click Chemistry at Supercritical Conditions PM13 Copaiba Oil-loaded Commercial Wound Dressings Using Supercritical CO2: a Potential Alternative Topical Antileishmanial Treatment PM14 A Comparative Study of Copper(II) Alkanoates-Isonicotinamide Adducts Obtained via Slow Evaporation and	M08 One Pot Enzyme Catalysed Reaction with Corn Germ Oil and Product Separation 26 th M09 Effect of scC02 on the Kinetics of Acetylation of Cellulose Using 1-allyl-3-methylimidazolium chloride as Solvent 26 th M10 New Insights on Biopolymer Sterilization Using Supercritical CO2 Technology 26 th M11 Low-Soluble Drugs Release from Bio-Aerogels 26 th M12 PLA Functionalization via Click Chemistry at Supercritical Conditions 26 th M13 Copaiba Oil-loaded Commercial Wound Dressings Using Supercritical CO2: a Potential Alternative Topical Antileishmanial Treatment A M14 A Comparative Study of Copper(II) Alkanoates-Isonicotinamide Adducts Obtained via Slow Evaporation and Using Supercritical CO2 as An Antisolvent M15 M15 Optimization of Subcritical Water Processing of Zr0.1Ti0.9On and Its Effect on Microstructural Properties M16 M18 Esterification of Isoamyl Alcohol by Immobilized Lipase in Supercritical CO2 M19 Non-invasive Determination of Transport Properties and Solubilities for (Compressed CO2)/Polyol-mixtures			
PM09 Effect of scCO2 on the Kinetics of Acetylation of Cellulose Using 1-allyl-3-methylimidazolium chloride as Solvent PM10 New Insights on Biopolymer Sterilization Using Supercritical CO2 Technology PM11 Low-Soluble Drugs Release from Bio-Aerogels PM12 PLA Functionalization via Click Chemistry at Supercritical Conditions PM13 Copaiba Oil-loaded Commercial Wound Dressings Using Supercritical CO2: a Potential Alternative Topical Antileishmanial Treatment PM14 A Comparative Study of Copper(II) Alkanoates-Isonicotinamide Adducts Obtained via Slow Evaporation and	M09Effect of scCO2 on the Kinetics of Acetylation of Cellulose Using 1-allyl-3-methylimidazolium chloride as Solvent26thM10New Insights on Biopolymer Sterilization Using Supercritical CO2 Technology26thM11Low-Soluble Drugs Release from Bio-Aerogels26thM12PLA Functionalization via Click Chemistry at Supercritical Conditions26thM13Copaiba Oil-loaded Commercial Wound Dressings Using Supercritical CO2: a Potential Alternative Topical Antileishmanial Treatment26thM14A Comparative Study of Copper(II) Alkanoates-Isonicotinamide Adducts Obtained via Slow Evaporation and Using Supercritical CO2 as An Antisolvent26thM15Optimization of Subcritical Water Processing of Zr0.1Ti0.9On and Its Effect on Microstructural Properties26thM18Esterification of Isoamyl Alcohol by Immobilized Lipase in Supercritical CO220M19Non-invasive Determination of Transport Properties and Solubilities for (Compressed CO2)/Polyol-mixtures			
PM10 New Insights on Biopolymer Sterilization Using Supercritical CO2 Technology PM11 Low-Soluble Drugs Release from Bio-Aerogels PM12 PLA Functionalization via Click Chemistry at Supercritical Conditions PM13 Copaiba Oil-loaded Commercial Wound Dressings Using Supercritical CO2: a Potential Alternative Topical Antileishmanial Treatment PM14 A Comparative Study of Copper(II) Alkanoates-Isonicotinamide Adducts Obtained via Slow Evaporation and	M10 New Insights on Biopolymer Sterilization Using Supercritical CO2 Technology 26 th M11 Low-Soluble Drugs Release from Bio-Aerogels April M12 PLA Functionalization via Click Chemistry at Supercritical Conditions April M13 Copaiba Oil-loaded Commercial Wound Dressings Using Supercritical CO2: a Potential Alternative Topical Antileishmanial Treatment A Comparative Study of Copper(II) Alkanoates-Isonicotinamide Adducts Obtained via Slow Evaporation and Using Supercritical CO2 as An Antisolvent M15 Optimization of Subcritical Water Processing of Zr0.1Ti0.9On and Its Effect on Microstructural Properties M16 Preparation and Characterization of Curcumin-Polymer Drug Delivery Systems M18 Esterification of Isoamyl Alcohol by Immobilized Lipase in Supercritical CO2 M19 Non-invasive Determination of Transport Properties and Solubilities for (Compressed CO2)/Polyol-mixtures			
PM11 Low-Soluble Drugs Release from Bio-Aerogels PM12 PLA Functionalization via Click Chemistry at Supercritical Conditions PM13 Copaiba Oil-loaded Commercial Wound Dressings Using Supercritical CO ₂ : a Potential Alternative Topical Antileishmanial Treatment PM14 A Comparative Study of Copper(II) Alkanoates-Isonicotinamide Adducts Obtained via Slow Evaporation and	M11 Low-Soluble Drugs Release from Bio-Aerogels Z6 ^m M12 PLA Functionalization via Click Chemistry at Supercritical Conditions April M13 Copaiba Oil-loaded Commercial Wound Dressings Using Supercritical CO ₂ : a Potential Alternative Topical Antileishmanial Treatment Antileishmanial Treatment M14 A Comparative Study of Copper(II) Alkanoates-Isonicotinamide Adducts Obtained via Slow Evaporation and Using Supercritical CO ₂ as An Antisolvent M15 M15 Optimization of Subcritical Water Processing of Zr0.1Ti0.9On and Its Effect on Microstructural Properties M16 M18 Esterification of Isoamyl Alcohol by Immobilized Lipase in Supercritical CO ₂ M19 M19 Non-invasive Determination of Transport Properties and Solubilities for (Compressed CO ₂)/Polyol-mixtures			
PM12 PLA Functionalization via Click Chemistry at Supercritical Conditions PM13 Copaiba Oil-loaded Commercial Wound Dressings Using Supercritical CO ₂ : a Potential Alternative Topical Antileishmanial Treatment PM14 A Comparative Study of Copper(II) Alkanoates-Isonicotinamide Adducts Obtained via Slow Evaporation and	M12 PLA Functionalization via Click Chemistry at Supercritical Conditions April M13 Copaiba Oil-loaded Commercial Wound Dressings Using Supercritical CO ₂ : a Potential Alternative Topical Antileishmanial Treatment Antileishmanial Treatment M14 A Comparative Study of Copper(II) Alkanoates-Isonicotinamide Adducts Obtained via Slow Evaporation and Using Supercritical CO ₂ as An Antisolvent M15 M15 Optimization of Subcritical Water Processing of Zr0.1Ti0.9On and Its Effect on Microstructural Properties M16 Preparation and Characterization of Curcumin-Polymer Drug Delivery Systems M18 Esterification of Isoamyl Alcohol by Immobilized Lipase in Supercritical CO ₂ M19 Non-invasive Determination of Transport Properties and Solubilities for (Compressed CO ₂)/Polyol-mixtures			-
PM13 Copaiba Oil-loaded Commercial Wound Dressings Using Supercritical CO2: a Potential Alternative Topical Antileishmanial Treatment PM14 A Comparative Study of Copper(II) Alkanoates-Isonicotinamide Adducts Obtained via Slow Evaporation and	 M13 Copaiba Oil-loaded Commercial Wound Dressings Using Supercritical CO₂: a Potential Alternative Topical Antileishmanial Treatment M14 A Comparative Study of Copper(II) Alkanoates-Isonicotinamide Adducts Obtained via Slow Evaporation and Using Supercritical CO₂ as An Antisolvent M15 Optimization of Subcritical Water Processing of Zr0.1Ti0.9On and Its Effect on Microstructural Properties M16 Preparation and Characterization of Curcumin-Polymer Drug Delivery Systems M18 Esterification of Isoamyl Alcohol by Immobilized Lipase in Supercritical CO₂ M19 Non-invasive Determination of Transport Properties and Solubilities for (Compressed CO₂)/Polyol-mixtures 			
PM14 A Comparative Study of Copper(II) Alkanoates-Isonicotinamide Adducts Obtained via Slow Evaporation and	 A Comparative Study of Copper(II) Alkanoates-Isonicotinamide Adducts Obtained via Slow Evaporation and Using Supercritical CO₂ as An Antisolvent Optimization of Subcritical Water Processing of Zr0.1Ti0.9On and Its Effect on Microstructural Properties Preparation and Characterization of Curcumin-Polymer Drug Delivery Systems Esterification of Isoamyl Alcohol by Immobilized Lipase in Supercritical CO₂ Non-invasive Determination of Transport Properties and Solubilities for (Compressed CO₂)/Polyol-mixtures 	PM13		
	M15 Optimization of Subcritical Water Processing of Zr0.1Ti0.9On and Its Effect on Microstructural Properties M16 Preparation and Characterization of Curcumin-Polymer Drug Delivery Systems M18 Esterification of Isoamyl Alcohol by Immobilized Lipase in Supercritical CO2 M19 Non-invasive Determination of Transport Properties and Solubilities for (Compressed CO2)/Polyol-mixtures	PM14	Copaiba Oil-loaded Commercial Wound Dressings Using Supercritical CO2: a Potential Alternative Topical	
	M16 Preparation and Characterization of Curcumin-Polymer Drug Delivery Systems M18 Esterification of Isoamyl Alcohol by Immobilized Lipase in Supercritical CO2 M19 Non-invasive Determination of Transport Properties and Solubilities for (Compressed CO2)/Polyol-mixtures		Copaiba Oil-loaded Commercial Wound Dressings Using Supercritical CO ₂ : a Potential Alternative Topical Antileishmanial Treatment A Comparative Study of Copper(II) Alkanoates-Isonicotinamide Adducts Obtained via Slow Evaporation and	
	M18 Esterification of Isoamyl Alcohol by Immobilized Lipase in Supercritical CO2 M19 Non-invasive Determination of Transport Properties and Solubilities for (Compressed CO2)/Polyol-mixtures		Copaiba Oil-loaded Commercial Wound Dressings Using Supercritical CO ₂ : a Potential Alternative Topical Antileishmanial Treatment A Comparative Study of Copper(II) Alkanoates-Isonicotinamide Adducts Obtained via Slow Evaporation and Using Supercritical CO ₂ as An Antisolvent	
	M19 Non-invasive Determination of Transport Properties and Solubilities for (Compressed CO ₂)/Polyol-mixtures		Copaiba Oil-loaded Commercial Wound Dressings Using Supercritical CO ₂ : a Potential Alternative Topical Antileishmanial Treatment A Comparative Study of Copper(II) Alkanoates-Isonicotinamide Adducts Obtained via Slow Evaporation and Using Supercritical CO ₂ as An Antisolvent Optimization of Subcritical Water Processing of Zr0.1Ti0.9On and Its Effect on Microstructural Properties	
			Copaiba Oil-loaded Commercial Wound Dressings Using Supercritical CO ₂ : a Potential Alternative Topical Antileishmanial Treatment A Comparative Study of Copper(II) Alkanoates-Isonicotinamide Adducts Obtained via Slow Evaporation and Using Supercritical CO ₂ as An Antisolvent Optimization of Subcritical Water Processing of Zr0.1Ti0.9On and Its Effect on Microstructural Properties Preparation and Characterization of Curcumin-Polymer Drug Delivery Systems	
			Copaiba Oil-loaded Commercial Wound Dressings Using Supercritical CO ₂ : a Potential Alternative Topical Antileishmanial Treatment A Comparative Study of Copper(II) Alkanoates-Isonicotinamide Adducts Obtained via Slow Evaporation and Using Supercritical CO ₂ as An Antisolvent Optimization of Subcritical Water Processing of Zr0.1Ti0.9On and Its Effect on Microstructural Properties Preparation and Characterization of Curcumin-Polymer Drug Delivery Systems Esterification of Isoamyl Alcohol by Immobilized Lipase in Supercritical CO ₂	
			Copaiba Oil-loaded Commercial Wound Dressings Using Supercritical CO ₂ : a Potential Alternative Topical Antileishmanial Treatment A Comparative Study of Copper(II) Alkanoates-Isonicotinamide Adducts Obtained via Slow Evaporation and Using Supercritical CO ₂ as An Antisolvent Optimization of Subcritical Water Processing of Zr0.1Ti0.9On and Its Effect on Microstructural Properties Preparation and Characterization of Curcumin-Polymer Drug Delivery Systems Esterification of Isoamyl Alcohol by Immobilized Lipase in Supercritical CO ₂ Non-invasive Determination of Transport Properties and Solubilities for (Compressed CO ₂)/Polyol-mixtures	

Poster	Title	
PM23	Preparation of Supported Catalysts with Hierarchical Porosity: Removal of the Polymer Template by Supercritical	
	Carbon Dioxide Extraction	
PM24	Near- and Supercritical Solvothermal Recycling of Carbon Fibres Reinforced Polymers (CFRPs)	
PM25	Supercritical Flow Synthesis of Pt1-xRux Nanoparticles: Comparative Phase Diagram Study of Nanostructure	
	versus Bulk	
PM26	Synthesis of a Temperature and pH-Sensitive Copolymer Using the Supercritical Fluid Technology	
PM27	Fluorinated SiO ₂ -based Aerogels: the Effect of the Substituent on the Properties of Materials	1
PM28	Advanced Approaches to the Catalysts Synthesis Using Supercritical Fluids	1
PM29	Towards a Sustainable Synthesis of Metal-Organic Frameworks (MOFs) with Supercritical CO2	
PM30	Investigation of Alginate Cation Crosslinking on the Aerogel Characteristics Using CO2 Induced Gelation	
PM31	Batch Foaming of Poly(lactic acid) with Supercritical Carbon Dioxide: Influences of Process Parameters on the	
	Morphology	27 th
PM32	Influence of Solvents on Inorganic and Organic Aerogels Properties	April
PM33	Development of a Disposable Molecularly Imprinted Electrochemical Sensor	1
PM34	Fluorinated SiO ₂ -based Aerogels: the Effect of the Substituent on the Properties of Materials	1
PM35	Production of PMMA Particles by Dispersion Polymerization in Supercritical CO ₂	
PM36	Encapsulation of Ovalbumin in PLGA Particles through Supercritical Fluid Extraction of Emulsions	
PM37	Hybrid Alginate-based Aerogels as Nasal Drug Delivery Systems	1
PM38	Re-crystallization and Micronization of Active Pharmaceutical Ingredients Using the Rapid Expansion of	
	Supercritical Solution Process	
PM39	Synthesis And Photoluminescent Properties Of Calcium Molybdate Particles By Several Solution Methods	1
PM40	Supercritical Impregnation of Acetylsalicylic Acid in Yeast β-glucan Aerogels	
PM41	Supercritical Impregnation of Therapeutic Deep Eutectic Solvent (THEDES) in Alginate Hydrogels	
PM42	A Pressure Vessel for Studying Gas Sorption and Synthesis of Thermosetting Polyurethane Foams	
PRC01	Supercritical Water Gasification of Black Liquor: from Batch to Continuous Operation	
PRC02	Effect of Pretreatments on Isolation of Bioactive Polysaccharides from Spent Coffee Grounds Using Subcritical	
	Water	26th
PRC03	Revalorization of Tobacco's Scrap and Stalk via Supercritical Water Hydrolysis: FASTSUGARS Process	April
PRC04	Biomethane from Mixed Organic Waste by Hydrothermal Conversion in Near- and Super-Critical Water	Артт
PRC05	Coffee Ground Lignocellulosic Fractionation Using Natural Deep Eutectic Solvents Coupled with CO_2	
PRC07	New System for Production of Clean Supercritical Water for Energy Use	
PRC08	Synthesis of 5-Hydroxymethylfurfural from Biomass in Two-Phase Supercritical CO ₂ -water Systems	
PRC09	Roles of Water on Solid Acid Catalyzed Organic Reactions in Sub- and Supercritical Water	
PRC10	Hydrothermal CO ₂ Reduction Using Biomass Derivatives as Reductants	
PRC11	Hydrolysis of Lignin in Sub and Supercritical Water Using an Ultrafast Reactor to Improve Selectivity: Effect of	
	Temperature	27 th
PRC12	Hydrogen Production by Catalytic Conversion of Olive Oil Mill Wastewater in Supercritical Water	April
PRC13	Bioreduction of CO ₂ to Metanol in Supercritical Conditions	
PRC14	Online Combination of Supercritical Fluid Extraction and Selective Sorption from Supercritical Solutions	
PRC15	Reducing Energy Cost in the Plant Scale Carbon Dioxide Recycling Systems	
PRC16	Biodiesel Synthesis from Fish Waste-Oil via Supercritical Methanol	