Cu₂O nanowires produced by oxidation of Cu nanowires

Daniela Nunes, A. Pimentel, P. Barquinha, P. A. Carvalho, E. Fortunato and R. Martins *MEON* CENIMAT/I3N, Departamento de Ciência dos Materiais, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa and CEMOP-UNINOVA, 2829-516 Caparica, Portugal

i3N FCt

Outline

Synthesis of Cu nanowires

- Oxidation
 Furnace annealing
 Microwave irradiation
- □ Structural characterization
- □ Possible applications

Solution based methods

- 24g of NaOH in 40 mL H_2O
- 0.5 g of Cu precursor in 20 mL of H_2O
- 0.050 mL Ethylenediamine (EDA)
- 0.010 mL Hidrazyne N₂H₄

Reactions

 $Cu(CO_2CH_3)_2 + 2NaOH \rightarrow Cu(OH)_2 + 2NaCO_2CH_3$

 $Cu(OH)_2 + N_2H_4 \rightarrow Cu + N_2 + H_2 + 2H_2O$

Cu nanowires

AFM/SEM/TEM

Oxidation reactions

- Cu possesses high oxygen affinity to oxygen
- Both Cu₂O and CuO can be produced from oxidation of metallic copper
- The most common oxidation states of Cu are:
 - +1 Cu₂O (cuprous oxide)
 - +2 CuO (cupric oxide)

• Cu_2O phase serves as a precursor to CuO, and the latter forms above a certain critical thickness of the Cu_2O layer.

 $\begin{array}{l} 4\text{Cu}+\text{O}_2\rightarrow 2\text{Cu}_2\text{O}\\ 2\text{Cu}_2\text{O}+\text{O}_2\rightarrow 4\text{Cu}\text{O} \end{array}$

Korshunov, A. V.; Il'in, A. P. Oxidation of copper nanopowders on heating in air. Russ J Appl Chem 2009, 82, 1164-1171

Oxide structures: Cu₂O e CuO

Cu nanowires

4th Jornadas of CENIMAT | I3N

DSC

XRD

Solvent selection

Cu nanowire oxidation

Oxidized material dispersions

Kevin, M.;Ong, W. L.;Lee, G. H.; Ho, G. W. Nanotechnology 2011, 22, 235701.

Furnace annealing

Function of time and temperature

- Higher annealing temperatures ($\geq 250^{\circ}$ C) / shorter annealing times (12 h) \rightarrow CuO + Cu₂O + Cu _(residual)
- Lower annealing temperatures ($\leq 225^{\circ}$ C) / longer annealing times (48 h) \rightarrow Cu₂O + Cu

XRD

Microwave irradiation

Function of microwave power input

Best condition for Cu elimination: 200 W, 250 Psi and 45 min

XRD

Furnace annealing vs. Microwave irradiation

Structural characterization

SEM

Furnace annealing vs. Microwave irradiation SEM/EDS

Furnace annealing vs. Microwave irradiation

Cu nanowires: $10 \pm 3.7 \mu m$ (length), $250 \pm 90 nm$ (diameter) Furnace annealing: $3.9 \pm 1.4 \mu m$ (length) and $280 \pm 90 nm$ (diameter) Microwave irradiation: $5 \pm 2.6 \mu m$ (length) and $385 \pm 100 nm$ (diameter)

ISN FCŁ

Nanostructured Cu₂O wires

SEM/EBSD

Cu nanowires

Microwave irradiation

Cu nanowires with axes (Y) parallel to <110>
Oxidation of the metal nanowires resulted in the growth of polyhedral Cu₂O crystals arranged in twinned configurations around the nanowire axis.
Axes (Y) parallel to <110> and are related by a 90° rotation around the nanowire axis.

D. Nunes, A. Pimentel, P. Barquinha, P.A. Carvalho, E. Fortunato, R. Martins, Journal of Materials Chemistry C, (2014).

SEM/FIB

Single crystal TFTs

Microwave nanowires with Pt contacts deposited by FIB

Photovoltaic applications

Nanowire-based heterojunctions by coating the p-CuO nanowire arrays in an n-ZnO layer

http://www.opticsinfobase.org/oe/fulltext.cfm?uri=oe-19-12-11271&id=214265

Thank you for your attention 🕲

and also to my dear co-workers...

