SCIENCESPRINGDAY

Chemistry Department, Requimte

Adsorption Science and Technology

Research Unit of Adsorption Separation and Process Engineering

Objectives

Development of cyclic adsorption processes (Pressure/Vacuum Swing Adsorption, PSA/VSA and Simulated Moving Bed, SMB) for the separation, purification and storage of gases with energy and environmental interest.

Target areas: Biogas upgrading and CO₂ capture from flue gases.

Study of state-of-the-art adsorbents such as metal-organic frameworks (MOFs), carbon nanotubes (CNTs), and also activated carbon honeycomb monoliths, and zeolites.

Methodology

Screening of suitable adsorbents for CO_2/CH_4 and CO_2/N_2 separations

Mathematical modelling of cyclic adsorption processes: computational simulation and experimental validation.

Computer-based design and optimization of adsorption processes for bio-CH₄ purification and CO_2 capture

Experimental validation of the simulation/optimization results

Expected Results

Design of SMB cycles for biogas upgrading to bio-CH₄ (>97% purity) with cocapture of CO₂. The environmental impact of the bio-CH₄ purification will be lower since the prevention of CO₂ emissions to the atmosphere is also ensured.

Design of PSA/VSA processes for capture of high purity CO_2 (>95%) from flue gases of fossil-fuelled power plants. This is a vital approach in the CO_2 mitigation strategy since it is the only way of ensuring a secure energy supply while developing reliable renewable energy sources.

chable reliewable energy sources.

Funding: Project EXCL/QEQ-PRS/0308/2012 from FCT Fundação para a Ciência e a Tecnologia MINISTÉRIO DA CIÊNCIA, TECNOLOGIA E ENSINO SUPERIOR

Rui P. P. L. Ribeiro

(rpp.ribeiro@fct.unl.pt)

- Post-Doc Researcher at FCT/UNL since May of 2013.
- PhD in Chemical and Biological Engineering (FEUP, March 2013).
- Track record of 8 peerreviewed papers.

Gravimetric apparatus for adsorption equilibrium determination

Adsorption isotherms of CO_2 (\blacklozenge), N_2 (\blacktriangle), and CH_4 (\blacksquare) on MIL-53(AI) at 303 K. The solid line represents the fitting with the Sips model.

APT characteristic curve of CH_4 (\blacksquare), CO_2 (\blacklozenge) and N_2 (\blacktriangle) on MIL-53(AI); the solid line represents the fitting with the D–A isotherm model.