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a b s t r a c t 

Multiple instances of Zika virus epidemic have been reported around the world in the last 

two decades, turning the related illness into an international concern. In this context the 

use of mathematical models for epidemics is of great importance, since they are useful 

tools to study the underlying outbreak numbers and allow one to test the effectiveness of 

different strategies used to combat the associated diseases. This work deals with the devel- 

opment and calibration of an epidemic model to describe the 2016 outbreak of Zika virus 

in Brazil. A system of 8 differential equations with 8 parameters is employed to model 

the evolution of the infection through two populations. Nominal values for the model pa- 

rameters are estimated from the literature. An inverse problem is formulated and solved 

by comparing the system response to real data from the outbreak. The calibrated results 

presents realistic parameters and returns reasonable descriptions, with the curve shape 

similar to the outbreak evolution and peak value close to the highest number of infected 

people during 2016. Considerations about the lack of data for some initial conditions are 

also made through an analysis over the response behavior according to their change in 

value. 

© 2018 Elsevier Inc. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

The Zika virus is a flavivirus that upon infection in humans causes an illness, known as Zika fever, identified commonly

with macular or papular rash, mild fever and arthritis [1,2] . It is mainly a vector-borne disease carried by the genus Aedes

of mosquitoes [2,3] , while in a lesser amount it is also transmitted via sexual interaction [4,5] , and contamination by blood

transfusion is under investigation [6] . The Zika virus was first isolated in primates from the Zika forest in Uganda in 1947

[7] . Evidences of the virus in humans were found in Nigeria in 1968 [8] . An epidemic occurred in 2007 on Micronesia [9] ,

followed by multiple outbreaks on several Pacific Islands between 2013 and 2014 [10,11] . The first Zika virus autochthonous

case in Brazil was reported around April, 2015 [12] , and nearly 30, 0 0 0 cases of infection were already notified by January 30,

2016 [13] , along with the Pan American Health Organization being informed in the same month about locally-transmitted

cases on numerous continental and island territories of America [14] . The Brazilian Ministry of Health registered 215, 319

probable cases of Zika fever (130, 701 of which were confirmed) until the 52th epidemiological week (EW) of 2016 [12] . The

Zika epidemic has been causing concern in the international medical community, health authorities and population, specially

due to an association between the Zika virus and other diseases, such as newborn microcephaly [4,15] and Guillain-Barré
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Fig. 1. Schematic representation of the SEIR–SEI model for the Zika virus outbreak description. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

syndrome [16] , whose correlation to the Zika virus was considered by the World Health Organization a “scientific consensus”

[17] . 

In this epidemic scenario, the development of control and prevention strategies for the mass infection is a critical issue.

A mathematical model capable of providing a description of the infected people throughout an outbreak is a useful tool

that can be employed to identify effective and vulnerable aspects on disease control programs [18–20] . Furthermore, for an

epidemic model to be truly useful it must undergo a judicious process of validation [21,22] , which consists in comparing

model predictions with real data in order to evaluate if they are realistic. In general, the first predictions of a model do

not agree with the observations, possibly due to inadequacies in the model hypotheses or because of a poor choice for

the model nominal parameters. The first case invalidates the model, but the second can be amended through a procedure

known as model calibration , where a set of parameters that promote a good agreement between predictions and observations

is sought. 

This work is one of the results in a rigorous ongoing process of identification and validation of representative models

to describe Zika virus outbreaks in Brazil [23,24] . For this purpose, a SEIR-SEI mathematical model is adapted to the Brazil-

ian scenario. This specific SEIR-SEI description has been successfully used before for the outbreaks in Micronesia [25] and

French Polynesia [26] . Some assumptions were also based on similar studies performed over SEIR dynamical systems [27–

30] . The nominal values of the model parameters belong to characteristics of the Zika infection and its vector, quantitatively

estimated in the literature or published by health organizations. Predictions are obtained from numerical simulation and

further heuristic manipulation, followed by a comparison to real data of the outbreak as an initial effort to validate the

model. In sequence, a rigorous process of model calibration is performed through the formulation and solution of an inverse

problem. 

The rest of this paper is organized as follows. In Section 2 , the mathematical model is described and estimation of

nominal values for the model parameters is discussed. In Section 3 , the forward and inverse problems are formulated and

solved, where results are detailed and a subsequent comparison between model predictions and experimental data is made

to calibrate the model. Finally, in Section 4 , the main contributions of this work are emphasized and a path for future works

is suggested. 

2. Epidemic model for Zika virus dynamics 

2.1. Model hypotheses 

This work utilizes a variant of the Ross–Macdonald model [31] for epidemic predictions, separating the populations into

a SEIR–SEI framework (susceptible, exposed, infectious, recovered) [32–34] . Each category represents the health condition

of an individual inside such group at time t , with respect to the considered infection. The susceptible group, denoted by

S ( t ), represents those who are uncontaminated and are able to become infected. The exposed portion of the population, E ( t ),

comprehends anyone that is carrying the pathogen but is still incapable of transmitting the disease. While the infectious

individuals, I ( t ), can spread the pathogen and may display symptoms associated with the illness. Finally, the recovered group,

R ( t ), contains those who are no longer infected. The populations of humans and vectors are segmented into the aforesaid

classes (excepting the group of recovered vectors), as Fig. 1 depicts schematically with the accordingly subscripts. S h , E h , I h 
and R h amass the number of people at each stage of the model description, and S v , E v , I v signifies proportion of vectors

( 0 ≤ S v , E v , I v ≤ 1 and S v + E v + I v = 1 ). 

Demographic changes in the number of humans are not considered because the timescale of infection is much faster

than the timescale of birth and deaths for the latter to significantly alter the development of the disease in the Brazilian

context (supplementary material B provides tools to test this assertion). The total vector population is maintained constant
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during the analysis, although variations of the proportion of vectors on the particular compartments are introduced via birth

and death rates. The vector in question is regarded as a hypothetical mosquito apt to being infected or infectious throughout

all its lifetime – which means the model accounts only for the adult stage of their life cycle – and also unable to recover. 

The time elapsed while an individual is on the aforementioned exposed group is known as the latent period of an

organism and, in this work, is adopted as equivalent to the commonly called incubation period (the time elapsed between

being infected and exhibiting symptoms), since data is extremely sparse on the latter for humans [35] (namely, the intrinsic

incubation period). Both terms are used interchangeably hereafter, and the concepts do not differ on the mosquitoes case

(the extrinsic incubation period) [36] . In addition, all the members of the susceptible group are treated as equally capable

of being infected and the recovered ones as completely immunized. 

2.2. Model equations 

The evolution of individuals through the SEIR–SEI groups is governed by the following (nonlinear) autonomous system

of ordinary differential equations 

d S h 
d t 

= −βh S h 
I v 

N v 
, 

d S v 

d t 
= δ N v − βv S v 

I h 
N h 

− δ S v , 

d E h 
d t 

= βh S h 
I v 

N v 
− αh E h , 

d E v 

d t 
= βv S v 

I h 
N h 

− (αv + δ) E v , 

d I h 
d t 

= αh E h − γ I h , 
d I v 

d t 
= αv E v − δ I v , 

d R h 

d t 
= γ I h , 

d C 

d t 
= αh E h , 

(1)

where N represents the total population and 1/ α the disease’s incubation period (each with the corresponding subscript of

h for human’s and v for vector’s), 1/ δ means the vector lifespan, 1/ γ is the human infection period – which is defined in

this work as the interval of time that a human is infectious — and β identifies the transmission rate, specifically βh is the

mosquito-to-human rate and βv the human-to-mosquito rate. 

The transmission terms βh S h I v /N v and βv S v I h /N h are composed by a number of susceptible individuals ( S h , S v , respec-

tively), a transmission rate ( βh , βv ) and the probability of the contact being made with an infectious member of the other

population ( I v /N v , I h /N h ). Both transmissions terms come from the assumption that the rate of contacts is constant, which

characterizes a frequency-dependent transmission [37] . 

The compartmentalization hypothesis requires setting the variables at the initial time of the analysis, t 0 , such that their

sum equals the total population in each case, e.g, S v (t 0 ) + E v (t 0 ) + I v (t 0 ) = N v = 1 . By so doing, for all t > t 0 , S h ( t ), E h ( t ), I h ( t )

and R h ( t ) will always add up to N h ; and N v (t) will be the equilibrium solution of the initial value problem 

d N v 

d t 
= δ (1 − N v (t)) , N v (t 0 ) = 1 , (2)

namely, N v (t) = 1 . This consideration allows the simplification of treating the total vector population as a parameter N v ,

instead of a variable, since it stays constant throughout the analysis. If one wishes to treat the vector population as a

variable, a recruitment parameter would need to be added in place of δ N v as well as another differential equation to account

for the changes in N v (t) . 

The dC/dt equation allows evaluation of the cumulative number C ( t ) of infectious people until the time t , that is, the

amount of humans so far that contracted the disease and have passed through or are in the infectious group at the given

time. 

Additionally, a set of M = 52 points to represent the number of new infectious cases of Zika fever at each week is defined

as follows: 

N w 

= C w 

− C w −1 , N 1 = C 1 , w = 2 , . . . , 52 , (3)

where C w 

is the cumulative number of infectious humans in the w -th EW. 

Fig. 2 organizes the data of cumulative number of infectious and new cases per week provided by the Brazilian Ministry

of Health [38] (supplementary material A) for 2016, where the evolution of the infection can be seen. The expected behavior

for the model is that it generates a seemingly year long outbreak for 2016 that matches C ( t ) and N w 

to the data of Fig. 2 .

The end of this outbreak is marked by the exposed and infectious portions of vectors reaching very low values, effectively

killing off the contamination process to the point that S h ( t ) stabilizes. 

2.3. Nominal parameters 

The preliminary values for the parameters of the set of Eqs. (1) come from the related literature concerning the Zika

infection, vector-borne epidemic models, the Aedes aegypti mosquito (which is the main vector for Zika, Dengue and
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Fig. 2. Outbreak data. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Yellow fever in Brazil) and publications provided by health organizations and government agencies. The Brazilian Institute

of Geography and Statistics reports that Brazil had approximately N h = 206 × 10 6 people by July, 2016 [39] , and N v is set 1

to entail an entire vector population. The adopted extrinsic incubation period is 1 /αv = 9 . 1 days [25] . This value agrees with

other statistical confidence intervals (CI) that are presented for the parameter in another works (95% CI: 7.3–9.3 days [40] )

and is close to the numbers suggested by experimental studies for the time necessary for the virus to reach the mosquito’s

saliva after an infectious blood meal (5 [41,42] and 7 days [43] ). A systematic review and pooled analysis of the literature

and case studies available in [44] estimates that the median intrinsic incubation period is 5.9 days (95% CI: 4.4–7.6). This

values is selected for 1/ αh in this work and is compatible with the range of 3–12 days recommended by multiple sources

[15,45,46] , also formerly used in previous studies [47] . The aforementioned literature analysis in [44] also concludes that

9.9 (95% CI: 6.9-21.4) days is the mean time until an infected has no detectable virus in blood. Considering the assumption

that the infectiousness in Zika infection ends 1.5–2 days before the virus becomes undetectable [25,40] , the chosen value

for the human infectious period is 1 /γ = 9 . 9 –2 = 7 . 9 days. As for the vector lifespan 1/ δ, “the adult stage of the mosquito

is considered to last an average of eleven days in the urban environment ” according to Otero et al. [48] . This is the assumed

value for the parameter in this work, which is also consistent with the usual life expectancy for the mosquito in Rio de

Janeiro, Brazil [49] , and comes close to the average of 2–3 weeks considered in biological studies about the species [50] and

by the Centers for Disease Control and Prevention [51] . Lastly, the time between a mosquito being infected and it infecting

a human, 1/ βh , and the time between a human infection and a mosquito taking an infectious blood meal, 1 /βv , is estimated

in [40] as an average of 11.3 days (95% CI: 8.0–16.3) and 8.6 days (95% CI: 6.2–11.6), respectively. 

3. Calibration of the epidemic model 

3.1. Forward problem 

The epidemic model of Section 2 , supplemented by an appropriate set of initial conditions, is a continuous-time dynam-

ical system 

˙ x (t) = f ( x (t) , p ) , x (t 0 ) = x 0 (4) 

where x (t) = ( S h (t) , E h (t) , I h (t) , R h (t ) , S v (t ) , E v (t ) , I v (t ) , C(t ) ) ∈ R 

8 is the vector of states at time t , x 0 =(
S i 

h 
, E i 

h 
, I i 

h 
, R i 

h 
, S i v , E 

i 
v , I 

i 
v , C 

i 
)

∈ R 

8 is a prescribed initial condition vector referring to the initial time t 0 of the analysis,

the vector p = ( N h , βh , αh , γ , N v , βv , αv , δ) ∈ R 

8 lumps the model parameters and f : U ⊂ R 

8 × R 

8 → R 

8 is a nonlinear map

which gives the evolution law of this dynamics, defined (for fixed t ) on the open set 

U = 

{
(x (t) , p ) ∈ R 

8 × R 

8 
∣∣ x n (t) > 0 and p n > 0 , for n = 1 , . . . , 8 

}
. (5) 

The forward problem consists in providing initial conditions (IC) and a set of parameters, represented by the pair α =
(x 0 , p ) , and compute by means of numerical integration the model response x ( t ) from which a scalar observable φ( α, t ) is

obtained. In the forward problem, α represents all IC and system parameters from Eq. (1) , while φ( α, t ) is the new cases

N w 

system response from Eq. (3) . 

Since the map f has a polynomial nature in x , it is a continuously differentiable function in x . Thus, the existence and

uniqueness theorem for ordinary differential equations guarantees that the initial value problem of (4) has an unique so-

lution. Besides that, one can also show that this solution is continuously dependent on α, as well as the forward map φ
[52,53] . 

The evaluation of the system response in the forward problem is performed numerically in this work via a Runge–Kutta

(4,5) method and the scalar observable of interest N w 

is used to assess the simulation when compared with real data of
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Fig. 3. Outbreak data (red) and model response using the nominal parameters (blue). (For interpretation of the references to color in this figure legend, 

the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C

the 2016 outbreak made available by the Brazilian Ministry of Health [38] (supplementary material A). The referred data

consists of probable cases of infected people per EW, registered by sanitary outposts and health institutions throughout the

country when the common symptoms of Zika fever were exhibited by an individual. In accordance with the hypothesis that

one only displays symptoms when inside I h ( t ), the C ( t ) variable models this discrete accumulating data on a continuous

sense and N w 

provides the corresponding influx per EW. The C ( t ) time series is also observed as a criteria for good fitting,

since it signifies the general impact of the epidemic and because a reasonable N w 

result does not necessarily implies an

acceptable cumulative number of infectious individuals for all t in comparison to the data. 

The initial time of the analysis was established as the first EW of 2016. The remaining individuals in both populations

are assumed susceptible at first, meaning S i 
h 

= N h − E i 
h 

− I i 
h 

− R i 
h 

and S i v = N v − E i v − I i v . The initial values for the exposed and

infectious groups are set equal, E i 
h 

= I i 
h 

and E i v = I i v . Likewise, the number of infected humans at the initial time must be

I i 
h 

= C i , given its definition. The value of C i is taken as the number of confirmed Zika cases in Brazil on the first EW of 2016

[38] , 8, 201 individuals, and the recovered group is assumed equal to the suspected number of infected in 2015, according

to the data available [13] , R i 
h 

= 29 , 639 individuals. As for the proportion of infectious vectors in the first week, to work

around the lack of data for this initial condition, repetitive manual estimations were tried until the resulted time series of

N w 

presented reasonable values compared to the real data. It became clear that the system response is very sensible to I i v ,

as slight variations in its value are required to achieve feasible results. In the process of choosing its value, the matching of

the N w 

curve’s peak to the amplitude of infection is also a priority, since this is the main interest region for evaluation of

the outbreak. The nominal values of the parameters exhibited viable N w 

curves around I i v = 2 . 2 × 10 −4 . 

Fig. 3 presents the SEIR–SEI model response for the nominal set of parameters from Section 2.3 , supplied with the above

IC, on an epidemiological week temporal domain consisting of one to fifty-two weeks (7 to 365 days), compared with the

data of the outbreak (red dots). 

The general shape of the curves in Fig. 3 do provide qualitative information regarding the evolution of the infection, even

though the portrayed descriptions are not quantitatively realistic. This inherent pattern agreement and numerical mismatch

suggests that the model response may differ from the real data due to the use of unsuitable values for the parameters or

incorrect IC assumptions. The search for parameter and initial condition values that make the simulations fit well to the

observed data defines model calibration (or system identification), being the object of interest of the next section. 

3.2. Inverse problem 

The model calibration problem seeks to find a set of parameters that, to a certain degree, makes the model response as

close as possible to the empirical observations (reference data), once, due to the erros on model conception and reference

data acquisition, it is (practically) impossible for the forward map to reproduce the outbreak observations. 

The mathematical setting for this case considers the parameters vector α defined in the parameter space E = R 

12 ,

since here α comprises all IC and system parameters from Eq. (1) , excepting N h , N v , R i 
h 

and C i , which are kept fixed in

their nominal values. For the purpose of comparison between observations and predictions, a discrete set with M time-

instants is considered, so that scalar observations and predictions are respectively lumped into y = (y 1 , y 2 , . . . , y M 

) and

φ( α) = ( φ1 , φ2 , . . . , φM 

) , both defined in the data space F = R 

M . Note that the forward map φ: E → F associates to each

parameters vector α an observable vector φ( α) where the component represents the number of new cases in each week

of the year, i.e., φw 

= N w 

. In practice, the parameters vector is restricted to be on the convex set of admissible values

 = 

{
α ∈ E 

∣∣ lb ≤ α ≤ ub 

}
, in which lb and ub are lower and upper vector bounds for α, respectively. 
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Fig. 4. Schematic representation of the forward and inverse problems associated to the epidemic model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In formal terms, given an observation vector y ∈ F and a prediction vector φ( α) ∈ F , the calibration aims at finding a vector

of parameters α∗ such that 

α∗ = arg min 

α∈ C 
J(α) , (6) 

for a misfit function 

J(α) = || y − φ( α) || 2 = 

{ 

M ∑ 

m =1 

∣∣∣y m 

− φm 

( α) 

∣∣∣2 

} 

. (7) 

This is the inverse problem associated to the epidemic model. In general this type of problem is extremely nonlinear, with

none or low regularity, multiple solutions (or even none), being much more complicated to attack in comparison with the

forward problem [54,55] . A schematic representation of the forward and the inverse problem associated to the epidemic

model is shown in Fig. 4 . 

This inverse problem attempts to estimate a finite number of parameters on a finite dimension space, being defined in

terms of a typical nonlinear misfit function. Therefore, Theorem 4.5.1 of Chavent [56] can be invoked to guarantee a proper

sense of well-posedness (existence, uniqueness, unimodality and local stability) for the inverse problem. 

The Trust–Region–Reflective method (TRR) is employed here to numerically approximate a solution for the inverse prob-

lem (6) . The main idea of the method is to minimize a simpler function that reflects the behavior of J ( α) in a neighborhood

(trust-region) around α. The simpler function is defined as dependent on the trial step s , characterizing the Trust–Region

subproblem, and its computation is optimized by restricting the subproblem to a two-dimensional subspace. The subspace

is linear spanned by a multiple of the gradient g and (in the bounded case) a vector obtained in a scaled modified Newton

step, used for the convergence condition D (α) −2 
g (α) = 0 , where D is a diagonal matrix that depends on α, g , lb , and ub

[57] . Finally, the trial step is found through the subproblem as 

s ∗ = arg min 

s 

{ 

1 

2 

s T Qs + g 

T s | || D s || 2 ≤ �
} 

, (8) 

where � is a scalar associated with the trust region size; Q is a matrix involving D , a Jacobian matrix (also dependent

on α, g , lb , and ub ) and an approximation of the Hessian matrix [57] . The quadratic approximation in Eq. (8) has well-

behaved solutions [58] and if J(α + s ) < J(α) then α is updated to α + s and the process iterates, otherwise � is decreased.

In addition, a reflection step also occurs if a given step intersects a bound: the reflected step is equivalent to the original

step except in the intersecting dimension, where it assumes the opposite value after reflection. 

The TRR algorithm also requires an initial guess for each parameter, identified in the next section as “TRR input”. The

stopping criteria are the norm of the step and the change in the value of the objective function, with a tolerance of 10 −7 .

Supplementary material B provides details on the software used for implementation. 
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Fig. 5. Outbreak data (red) and calibrated model response (blue) from Table 1 . (For interpretation of the references to color in this figure legend, the reader 

is referred to the web version of this article.) 

Table 1 

TRR setup for Fig. 5 calibrated response. The values referring to parameters are 

in days 
−1 

, human IC are expressed in individuals, and vector quantities in pro- 

portion. 

α TRR input lb ub TRR output Reference 

αh 1/5.9 1/12 1/3 1/12 [15,40,44–47] 

αv 1/9.1 1/10 1/5 1/10 [40,41,43] 

γ 1/7.9 1/8.8 1/3 1/8.8 [25,40,47] 

δ 1/11 1/21 1/11 1/16.86 [47,49–51] 

βh 1/11.3 1/16.3 1/8 1/16.3 [40] 

βv 1/8.6 1/11.6 1/6.2 1/11.6 [40] 

S i 
h 

205, 953, 959 0.9 × N h N h 205, 700, 000 ———–

E i 
h 

8201 0 N h 15, 089 ———–

I i 
h 

8201 0 N h 253, 360 ———–

S i v 0.99956 0.99 0.999 1 ———–

E i v 2 . 2 × 10 −4 0 1 0 ———–

I i v 2 . 2 × 10 −4 0 1 0 ———–

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.3. Numerical experiments for calibration 

Fig. 5 presents the best result for the N w 

system response fitting problem using the nominal parameters and IC from

Sections 2.3 and 3.1 as initial guesses for the TRR algorithm. The upper and lower bounds used for the parameters were set

compatible with the literature suggested intervals and are presented in Table 1 , along with the parameters and IC values

resulted from the calibration (“TRR output”). The ub for δ was assumed lower than the lb for αv to maintain consistency

with the model interpretation. The minima for S i 
h 

and S i v were set to 0.9 N h and 0.99, respectively, to establish a high number

of susceptible individuals as is expected for the beginning of an outbreak. Also, the lower and upper bound (0.999) for

S i v were motivated by noticing how variations in E i v and I i v of order 10 −3 already bring significant changes in the system

response. The lack of available data for the exposed and infectious groups at the onset of the epidemic was circumvented

by appointing its minimum and maximum possible values as lb and ub , i.e., E i v and I i v were restricted between zero and

one, while E i 
h 

and I i 
h 

were bounded by zero and N h . 

Additionally, to ensure the model hypotheses of compartmentalization and constant population, two additional fitting

points were defined, �h = S i 
h 

+ E i 
h 

+ I i 
h 

and �v = S i v + E i v + I i v , which were set to match N h − R i 
h 

and N v = 1 on Eq. (6) , respec-

tively. However, the algorithm is only capable of approximating �h and �v to their intended values. So to account for these

minor differences, the resulting values of (N h − R i 
h 
) − �h and 1 − �v were added to the TRR output of S i 

h 
and S i v . These

corrections did not impact the calibration, since the scale of the differences would always be, correspondingly, 10 −4 and

10 −2 (at most), which are below the sensibility of S i 
h 

and S i v ; thus, they were only exacted to keep the hypotheses rigorously

sustained, otherwise the sum of the compartments in each population would quickly tend to N h and N v in an asymptotic

fashion. 

Clearly, Fig. 5 is a reasonable description of the outbreak: the general shape of the infection evolution is attained, all

parameters are within realistic possibilities, the C ( t ) curve overshoots the data by merely 6.00%, the peak value of N w 

differs

from the empirical data maximum by 7.87% and is only one week off. However, taking into consideration the order of

magnitude of the first data point ( C i = 8 , 201 ) and the scale of the infection (215, 319 probable cases until the 52th EW

[12] ), the TRR output for I i 
h 

(253, 360) is probably too high, even though there is no reference value to compare with the
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Fig. 6. Outbreak data (red) and calibrated model response (blue) from Table 2 . (For interpretation of the references to color in this figure legend, the reader 

is referred to the web version of this article.) 

Table 2 

TRR setup for Fig. 6 calibrated response. The values referring to parameters 

are in days 
−1 

, human IC are expressed in individuals, and vector quantities in 

proportion. 

α TRR input lb ub TRR output Reference 

αh 1/5.9 1/12 1/3 1/12 [15,40,44–47] 

αv 1/9.1 1/10 1/5 1/10 [40,41,43] 

γ 1/7.9 1/8.8 1/3 1/3 [25,40,47] 

δ 1/11 1/21 1/11 1/21 [47,49–51] 

βh 1/11.3 1/16.3 1/8 1/10.40 [40] 

βv 1/8.6 1/11.6 1/6.2 1/7.77 [40] 

S i 
h 

205,953,959 0.9 × N h N h 205,953,534 ———–

E i 
h 

8201 0 10,0 0 0 6827 ———–

I i 
h 

8201 0 10,0 0 0 10,0 0 0 ———–

S i v 0.99956 0.99 0.999 0.999586 ———–

E i v 2 . 2 × 10 −4 0 1 4 . 14 × 10 −4 ———–

I i v 2 . 2 × 10 −4 0 1 0 ———–

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

number of infectious individuals at the beginning of 2016, making it difficult to ascertain on a deterministic manner what

is a feasible value for I i 
h 
. 

Fig. 6 allows examination of the system behavior when the I i 
h 

value is around C i , by depiction of another result to the

inverse problem when the upper bound of the initial number of infectious individuals is set to 10,0 0 0. The same restriction

was made over E i 
h 

merely to simplify the analysis. Table 2 displays the resulting parameters and IC. 

The model response for a 10,0 0 0 I i 
h 

restriction also presents acceptable predictions of the general shape and numbers of

the outbreak, even though it is less accurate than Fig. 5 on a fitting criteria for N w 

. For comparison, the N w 

peak and data

maximum difference increased to 10.57% and two weeks, while the overshoot on the C ( t ) time series actually reduced to

5.74%. 

To compare the two systems defined by the parameters and IC from each table, Fig. 7 portrays their I h response. The

system from Table 1 has an almost monotonically decreasing I h curve, except for a slight local maximum around the 6th

EW, while the system from Table 2 presents a significant increase in the number of infectious individuals by the same time,

which correspond to the weeks right before the peak infection. As stated, the lack of empirical data for the current number

of infectious at each EW makes it impossible to determine what is a quantitatively reasonable prediction for I h values. But

this work assumes that a more possible scenario involves a I h time series that also follows the general shape of an epidemic

curve around the weeks of maximum infection, especially considering that Fig. 7 (a) implicates the notion that most people

were infected strictly before 2016, which does not seems the case suggested by the Brazilian outbreak data of probable cases

of infected per EW [12] when compared to numbers available for 2015 [13] . Thus, with this qualitative criteria in mind, the

system from Table 2 is selected for a further analysis over its behavior dependency to the I i 
h 

initial condition. 

Fig. 8 displays the C ( t ), N w 

and I h ( t ) responses per EW for various I i 
h 

on the system with parameters from Table 2 . To

simplify the analysis, E i 
h 

is considered equal to I i 
h 

in each case. The remaining IC are the same from the Table. The pattern
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Fig. 7. Comparison between I h ( t ) responses from Table 1 (left) and Table 2 (rigth). 
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Fig. 8. Multiple C ( t ), N w and I h ( t ) responses per EW using the parameters from Table 2 . The values on the legend correspond to the used I i 
h 

and E i 
h 

to 

generate the curves. The other IC are also from Table 2 . The bottom right graph is the I h comparison magnified around the local maximum region. The red 

circles are the previously used real data. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this 

article.) 

 

 

 

 

suggests that a I i 
h 

increase on the system with this given set of parameters continuously escalates the C ( t ) and N w 

curves,

eventually overshooting the data by far, and reduces the variations of I h ( t ) curve around its local maximum. Fig. 8 allows

one to make better predictions about the outbreak by analyzing the multiple possible scenarios of epidemic evolution over

different values for the IC missing empirical information. Clearly, the system response in all cases is qualitative reliable in

simulating the outbreak ( C ( t ) and N w 

shape) and can quantitatively approximate the real data values for some values of I i 
h 
. 
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4. Concluding remarks 

A SEIR–SEI epidemic model to describe the dynamics of the 2016 Zika virus outbreak in Brazl is developed and calibrated

in this work. Nominal quantities for the parameters are selected from the related literature concerning the Zika infection,

the Aedes aegypti genus of mosquitoes, vector-born epidemic models and information provided by health organizations. The

calibration process is done through the solution of an inverse problem with the aid of a Trust–Region–Reflective method,

used to pick the best parameter values that would fit the model response for the number of new infectious cases per

week into the disease’s empirical data. Results within realistic values for the parameters are presented, stating reasonable

descriptions with the curve shape similar to the outbreak evolution and proximity between the estimated peak value and

data for maximum number of infected during 2016. Further analysis of the results about the lack of data for an initial

condition is performed, exhibiting a range of values over which the system response keeps its quantitative reliability to a

certain degree. 

This work is part of a long project of modeling and prediction of epidemics related to the Zika virus in the Brazilian con-

text [23,24] . In upcoming studies the authors intend to take into account the uncertainties underlying the model parameters

via Bayesian updating and employ an Active Subspace approach [59–61] to explore relevant scenarios in parametric studies.
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