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Abstract. The study of the 3D organization of nuclear DNA is attracting increasing
interest since it has been shown to have a direct impact in the regulatory machinery of
the cell. In particular, topologically associating domains (TADs) are structural units of
chromatin regions proven to be highly self-interacting. A TAD can span from hundreds
of kilobases to few megabases, thus potentially including a set of different genes to-
gether with promoters and regulatory regions.
Improvements in sequencing and computational technologies are continuously deliver-
ing biomarker signatures for many different diseases. These signatures often involve
hundreds or thousands of different genomic loci, thus transforming in a challenge inter-
preting and identifying the underlying regulatory mechanisms for the target condition.
We propose a tool for computational and statistical analysis of biomarker signatures
and topologically associating domains, with the aim of determining DNA domains sig-
nificantly enriched with loci of interest. We believe that this approach eases the inter-
pretation and further study of large sets of biomarker loci. In this paper, we show the
potential of this tool in a case study of methylation biomarkers for Lynch Syndrome.
However, the proposed tool is of general purpose and can be run on any set of loci of
interest to identify enriched DNA domains.

1 Introduction
Spatial organization of DNA is a key player for genome functionality and transcrip-

tion [1]. Topologically associating domains (TADs) are primarily cell-type-independent
genomic regions that define interactome boundaries and can aid in the designation
of limits within which an association most likely impacts genome-encoded regulatory
function, whether this function is mediated by protein-coding elements or by non-coding
RNA. TADs are experimentally defined by observations of increased chromatin contact
frequency, consistency across cell types and, interestingly, of enrichment of CTCF in-
sulator element flanks [1, 2]. Therefore, TADs can be used as virtual genome-grammar
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boundaries that demarcate locations where not only genes, but most notably non-coding
causal variants will most likely impact regulatory function [3]. Given their increasing
popularity, many computational tools have emerged to predict TADs from Hi-C data
(for a review, see [4, 5]). Also, Way et al (2017) have described and validated a com-
putational method that uses the genic content of TADs to prioritize candidate genes.
Their method, called ’TAD Pathways’, performs a Gene Ontology analysis over genes
that reside within TAD boundaries corresponding to GWAS signals for a given trait or
disease [6].

DNA methylation is an epigenetic mark related to many biological aspects such as
gene expression, diseases or immunity. Cytosines methylation occurs when a methyl
group attaches to a cytosine (C) in the DNA sequence, affecting its chemical properties.
Studying DNA methylation is drawing increasing relevance, since it is dynamic and
reversible. Mature technologies exist to measure DNA methylation levels in particular
regions of DNA, such as methylation arrays and Bisulfite-Sequencing (BS-Seq) tech-
nologies. Currently, the identification of individual differentially methylated regions
(DMR) is attracting most of the effort to discover methylation biomarkers. However,
methylation sequencing experiments often generate hundreds of potential biomarkers
which need further annotation and interpretation. In this paper we present a tool that
allows to identify TADs significantly enriched with biomarkers of interest.

Particularly, we show the potential of this tool in a case study on methylation biomark-
ers for Lynch Syndrome (LS). LS represents between 4% to 5% of all colorectal can-
cer (CRC) cases and it is caused by different known mutations in DNA repair genes.
Individuals that are carriers of LS mutations have a high risk of developing CRC,
but also endometrial, ovarian, small intestine, and urinary tract cancers. LS has an
autosomal-dominant transmission and causes an estimated lifetime risk for CRC as high
as 80% to 85%, compared with 5% in the general population. Although screening with
colonoscopy has been demonstrated to decrease cancer incidence in individuals that
carry LS mutations, many patients continue developing CRC at a young age. Therefore,
there is an urgent need for a better understanding of the pathogenesis of colorectal pre-
malignant lesions, instrumental for the development of novel preventive strategies for
Lynch syndrome. Chang et al (2018) have recently demonstrated that polyps arising in
Lynch Syndrome before cancer onset are enriched with CD4+ T cells [7]. This is consis-
tent with recently reported transcriptomic profiles detected in normal mucosa samples
of patients with LS who harbored a CRC, which showed strong immune responses as-
sociated to microenvironment invasion by CD4+ T cells, expression of immune check-
points, and HLA [8]. In view of this strong evidence for early involvement of CD4+ T
cell responses during the emergence of premalignant lesions in the colon of individuals
at risk, we decided to ask whether or not the appearance of DNA methylation alterations
in CD4+ cells in peripheral blood could serve as a very early biomarker of CRC risk.

Although this paper illustrates a case study on methylation biomarkers for Lynch
Syndrome, the proposed tool is of general purpose and can be run on any set of loci of
interest to identify enriched TADs.

This paper is structured as follows. Section Methods describes the methylation data
for the case study on Lynch Syndrome, the computational analysis for the identification
of potential methylation biomarkers and the proposed pipeline for TAD enrichment.
Section Results provides the results for the case study on Lynch Syndrome. Finally, we
present the conclusions.

2 Methods
2.1 Methylation biomarkers for Lynch syndrome
Peripheral blood samples were obtained from a sample of 16 healthy individuals,

who either carry or do not carry LS mutations, as determined by genetic analysis. Nine
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individuals present genetic mutations linked to LS, but do not exhibit any clinical signs
(cases), while the other seven are healthy individuals of the same family, without Lynch
type mutations. The study is currently ongoing and it is planned to recruit at least 80 –
100 subjects with Lynch type mutations. CD4+ T cells were isolated from each sample
and processed. Genome-wide bisulfite sequencing was carried out using the Agilent
SureSelect Human Methyl-Seq platform; the data at our disposal describe methylation
status of 1958283 CG sites. The primary objective of the study is finding differen-
tially methylated loci, by comparing methylation level of each site between cases and
controls, to be used as biomarkers for very early stage disease diagnosis. Methyla-
tion status of a CG site is usually quantified by the ratio β = M/(M + U), where M
and U denote methylated and unmethylated signal intensities, respectively. Treatment
with bisulfite deaminates unmodified cytosines to uracils (which are then amplified to
thymines), leaving 5-methylcytosines unaltered. Thus in a bisulfite sequencing experi-
ment β values are expressed as the proportion of cytosines in the total number of reads
of a given CG site, β = NC

i /C, where NC
i indicates the number of cytosines and C

the coverage. As we cannot assume a normal distribution for the data, we employed
the non-parametric two-sample Wilcoxon rank sum test to calculate p-values for dif-
ferential methylation, as measured by β values, between cases and controls. Since we
are performing multiple hypotheses testing, we should control for false discovery rate,
using for example Benjamini and Hochberg or Benjamini and Yekutieli methods. How-
ever for high-throughput methylation data involving thousands of comparisons, usually
with small sample size, it is still a matter of debate which is the best approach to effec-
tively reduce false positives. Our data derive from a very preliminary study and we were
mainly interested in developing a procedure to underpin the role of TADs in genomics
investigations, thus we directly used non-adjusted p-values from Wilcoxon test and se-
lected a set of differentially methylated loci with p < 0.005, to analyze their relation
with TAD structure.

2.2 Pipeline for TAD enrichment
This section describes the pipeline for the statistical enrichment of TADs with a set

of biomarkers of interest. For this process, two inputs are required: (1) the biomarker
signatures of interest, i.e. a set of genetic loci; (2) the definition of TAD boundaries.

Our tool implements the following steps:

1. Load the TAD boundaries and perform a whole-genome binning guided by TAD
coordinates. We define a bin as a region corresponding to either a TAD or the gap
region between two TADs.

2. Perform basic statistics on the number of TADs, the distribution of bin sizes, etc.

3. Count the number of signature loci (hits) located in every bin.

4. Filter-out irrelevant bins based on the content of Ns.

5. Define the null hypothesis for the statistical test. For single-loci resolution methy-
lation biomarkers, we chose to count the number of CG dinucleotides per bin.

6. Perform the statistical test.

(a) Using an exact multinomial goodness of fit test, performed through a Monte
Carlo simulation with the R package XNomial1, verify if signature loci are
distributed among TADs according to the null model probabilities given by
the proportion of dinucleotides CG present in each bin, p(0)

i = NCG
i /NCG

T ,
whereNCG

i andNCG
T are the numbers of dinucleotides CG in the i-th bin and

in all the genome, respectively.

1https://cran.r-project.org/package=XNomial
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Table 1: Experimental Data.

No. chr start end Bin
type

No.
hits

pvalue Genes miRNAs

1 chr7 1480000 2799999 TAD 26 6.27E-10 INTS1, MAFK, TMEM184A, PSMG3,
ELFN1, MAD1L1, FTSJ2, NUDT1,
SNX8, EIF3B, CHST12, GRIFIN, LFNG,
BRAT1,IQCE, TTYH3, AMZ1, GNA12

MIR4655,
MIR6836,
MIR4648

2 chr2 176080000176599999TAD 11 1.13E-08 EVX2, HOXD13, HOXD12, HOXD11,
HOXD10, HOXD9, HOXD8, HOXD3,
AC009336.19, HOXD4, HOXD1, MTX2

MIR10B,
MIR7704

3 chr7 4640000 4799999 GAP 9 4.79E-08 FOXK1, AP5Z1, RADIL
4 chr7 1 1199999 GAP 22 1.29E-07 FAM20C, WI2-2373I1.1, PDGFA,

PRKAR1B, DNAAF5, SUN1, GET4,
ADAP1, COX19, CYP2W1, C7orf50,
GPR146, GPER1, ZFAND2A

MIR339

5 chr4 1 1679999 GAP 23 1.55E-07 ZNF595, ZNF718, ZNF732, ZNF141,
ZNF721, PIGG, RP11-1263C18.3, PDE6B,
ATP5I, MYL5, MFSD7, PCGF3, CPLX1,
GAK, TMEM175, DGKQ, SLC26A1,
IDUA, FGFRL1, RNF212, SPON2, CTBP1,
MAEA, UVSSA, NKX1-1, FAM53A

MIR571

6 chr16 87280000 90338345 GAP 35 1.79E-07 C16orf95, RP11-178L8.4, FBXO31,
MAP1LC3B, ZCCHC14, JPH3, KL-
HDC4, SLC7A5, CA5A, BANP, ZNF469,
ZFPM1, ZC3H18, IL17C, CYBA, MVD,
SNAI3, RNF166, CTU2, PIEZO1, CDT1,
APRT, GALNS, TRAPPC2L, PABPN1L,
CBFA2T3, ACSF3, CDH15, SLC22A31,
ZNF778, ANKRD11, SPG7, RPL13,
CPNE7, DPEP1, CHMP1A, SPATA33,
CDK10, SPATA2L, VPS9D1, ZNF276,
FANCA, SPIRE2, TCF25, MC1R, RP11-
566K11.2, TUBB3, DEF8, RP11-566K11.6,
DBNDD1, GAS8, PRDM7

MIR6775,
MIR5189,
MIR4722

7 chr3 48200000 48639999 TAD 10 2.34E-07 CAMP, ZNF589, NME6, SPINK8,
FBXW12, PLXNB1, CCDC51, TMA7,
ATRIP, TREX1, SHISA5, PFKFB4, UCN2,
COL7A1, UQCRC1, TMEM89, SLC26A6,
CELSR3

(b) If the p-value of the multinomial test is < 0.05, run a post-hoc test to deter-
mine bins responsible for the significant deviation from the expected number
of hits. This is carried out for each bin using an exact binomial test.

7. Rank the bins significantly enriched with biomarkers based on the obtained p-
values.

8. Annotate the enriched bins with coding and non-coding genes from the GEN-
CODE project (https://www.gencodegenes.org).

All statistical and computational analysis were performed in R version 3.4.4.

3 Results
This section comments the results we obtained after applying the pipeline proposed in

section 2.2 to the methylation biomarker signatures obtained for Lynch Syndrome from
the statistical analysis detailed in section 2.1. As TAD boundaries, we chose the TAD
predictions for the Lymphoblastoid cell line GM12878 (GEO number GSM1608505)
provided by the method GITAR [9] 2.

Exact multinomial goodness-of-fit test gave a p-value < 10−5, with a Monte Carlo
simulation of 106 trials. The pipeline provides a table with TADs ordered according to
ascending p-values together with their annotation (see Table 1).

A detailed look at the results provided in Table 1 yields many interesting annotations
for the most significant TADs obtained with the proposed method. For example, TAD 1

2Data available at: https://data.genomegitar.org
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in Table 1 contains many genes involved in inflammatory disease, immunity and tumors:
MAD1L1, shown to be differentially methylated in CD4+ cells in inflammatory dis-
ease [10]; ELFN1-AS1, a novel primate antisense RNA gene expressed predominantly
in tumors [11]; CHST12, for which hypomethylation of a CG site has been shown to
have a sensitivity of 86% and specificity of 64% in detecting renal disease in patients
with Lupus [12]; GRIFIN, which plays a role in self/non-self recognition receptors in
innate and adaptive immunity [13]; LFNG shown to alter cytokine production and to
be involved in allergic diseases [14]; GNA12, known to be differentially expressed in
inflammatory bowel disease and ulcerative colitis [15].

TAD 2 contains the HOXD cluster, known to be differentially expressed upon activa-
tion of leukocyte sub-populations [16], including gene HOXD11, aberrantly methylated
in breast cancer [17].

Our tool also provides annotations for ncRNA genes, which are also very useful
for identifying potential functionality associated to the TADs where the differentially
methylated loci are located. For example, the first TAD from the results Table contains
the following microRNAs which are of interest for LS: miR-6836 acts as a serum marker
for pancreatobiliary cancers [18]; miR-4648 is disregulated in colon cancer [19]; miR-
339-5p inhibits breast cancer cell migration and invasion [20]; miR-3176 is associated
with cervical cancer [21]; miR-662 is associated with invasive lung carcinoma [22];
miR-711 has an oncogenic role in breast cancer [23].

Furthermore we studied homogeneity in methylation patterns in three relatively small
TADs among the 10 most significatives, TADs 2,7, and 9 (see Table 1), by estimating
average β values for cases and controls. Actually, we found that in all three TADs con-
sidered cases present a prevalence of hypomethylated CG sites with respect to controls.

A detailed analysis of the results provided by this tool is to be completed with the
clinicians involved in the study.

4 Conclusion
We described a computational and statistical tool intended to analyze TADs and pin

down the ones with most significant presence of biomarkers of interest. In particular,
to show the performance of the tool, we used methylation sequencing data from a pilot
study aimed at identifying differentially methylated CG sites in subjects with genetic
mutations related to LS. We selected a set of differentially methylated loci between
cases and controls and find out partitions of the genome significantly enriched with
these sites. We then analyzed annotations for protein coding genes and miRNAs of the
most relevant TADs, devising interesting links to be further investigated.
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