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Abstract. How the brain processes language is not completely understood. Alternative
hypotheses exist which attempt to explain the phenomenon. In order to provide a statis-
tical analysis on the latency of deciphering semantic categories in the human brain, we
used Electroencephalography (EEG) and Magnetoencephalography (MEG) data from
17 subjects, reading abstract or concrete words. We have applied support vector ma-
chine classification to differentiate between the brain states stemming from processing
the two word categories. Our study suggests that the latency from semantic process-
ing is in the ∼80-250ms range with EEG data giving the earliest indication. We found
that brain state separability was most easily discernible from MEG sensors and reaches
a maximum at ∼400-600ms. We hypothesize the early effects reflect semantic infor-
mation retrieval, while the later effect may reflect mental imagery or decision-related
processes.

1 Scientific Background
There is significant existing work in studying the neuronal mechanism underpinning

language processing. Many studies conclude there is high spatial complexity in compre-
hending words [1, 2, 3]. Hence, it has become evident that phonological and semantic
interpretation takes place in a distributed network of cortical regions with temporal de-
pendencies between them [4, 5, 6]. Current agreement on the topic is that the left frontal
and temporal cortices, namely Broca’s and Wernicke’s regions, play a principal role in
word meaning comprehension. What remains controversial is the processing impor-
tance of other areas, as well as the temporal contingencies and communication in the
whole neuronal network. This study aims to provide a more rigorous statistical analysis
on the time course of semantic processing in the brain.

Many studies in neuroscience generally employ neuroimaging techniques like Func-
tional Magnetic Resonance Imaging (fMRI), Positron Emission Tomography (PET),
or scalp-recording techniques, such as Electroencephalography (EEG) and Magnetoen-
cephalography (MEG). These approaches introduce both challenges and advantages.
Modalities such as fMRI offer spatial resolution in the millimeter range but hinder re-
searchers with their unsatisfactory performance in the time domain. EEG and MEG
excel in the area of high millisecond resolution at the expense of a loss in spatial resolu-
tion. EEG and MEG measure the electric and magnetic fields on the scalp, respectively,
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stemming from brain activity. Both monitoring methods have tens of electrodes posi-
tioned at specific locations.

Two goals are achieved in this study. Firstly, we exploit the temporal advantage of
EEG and MEG to improve the understanding of the time course of semantic word pro-
cessing with a focus on abstract and concrete concepts. We use Multivariate Pattern
Analysis (MVP) to discriminate between brain states stemming from processing differ-
ent word categories. A similar approach was successfully utilized by Cichy et al. [7] to
investigate whether visual information is encoded by cortical columns in the brain. We
also show how we can enhance MVP classification accuracy by performing feature en-
gineering so as to boost brain state separability. We then use the improved classification
rate to identify the earliest point in time when the accuracy rise can be considered statis-
tically significant. This latency is equivalent to the brain understanding word meaning.
A major achievement is providing statistical assessment of how long semantic interpre-
tation lasts. Secondly, we analyze which sensor types contain the most discriminative
information in word meaning. This analysis is conducted both with respect to maximum
classification accuracy and latency.

2 Materials and Methods
We use 17 subjects and observe their reactions to seeing abstract and concrete words

in a random succession on a screen. The words are presented randomly so that the
subjects do not know what word (and its category) will be shown next. The evoked
potentials from brain activity in response to each word trial, i.e. an epoch, are then
recorded (see fig. 1). To determine the time course of word processing in the brain MEG
and EEG signal data was analyzed with a Support Vector Machine (SVM). The libsvm
implementation by Chih-Chung Chang and Chih-Jen Lin was used [10]. The sensor
data was collected in trials of 85 and 95 abstract and concrete words, respectively. An
overall of 376 sensors were used during testing - 102 magnetometers, 204 gradiometers
(overall 306 MEG sensors) and 70 EEG sensors.

All epochs were sampled at 1000Hz from 500ms before a subject had seen a word to
700ms after. Bad EEG channels (exceeding a voltage threshold) were removed and esti-
mated using the average of nearby channels. A MaxFilter was used to remove far-away
artefacts from the MEG signals. All epoch waveforms also underwent the following
conditioning: firstly, they were FIR filtered between 1 Hz and 45 Hz; the signal baseline
from -500ms to 0s was subtracted from each time series, and finally electrooculogra-
phy (EOG) components and other noise (such as mains interference) were eliminated.
The resulting time series were then down-sampled to 200Hz to speed up processing.
Feature-scaling and normalization were also employed.

Figure 1: Visual representation of a word epoch from a single subject. The amplitude of the evoked
potentials has been normalized. It can be seen that the amplitude response of some channels rises after
0ms, i.e. after the subject sees a word on the screen, but there is no obvious trend.

To improve the signal-to-noise ratio prior to classification we averaged several epochs
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from the same word category in order to create more ”typical” samples of the respective
class. By utilizing this approach we can engineer features with more pronounced be-
haviour and make averaged epochs of concrete and abstract trials appear more different
to the classification algorithm. To achieve this M random epochs were sampled without
replacement and averaged from a word category. The procedure was repeated until all
epochs were exhausted.

The resulting dataset was split in training and validation (75%), and test (25%) sets.
The SVM classifier was trained with a linear kernel for each time index. We performed
5-fold cross-validation for hyperparameter optimization. The classifier was applied on
the test set to create a timeline accuracy of word category discrimination for various sen-
sor groups - magnetometers, gradiometers, EEG and combined. The whole procedure
was repeated 10 times for each subject and the average test classification was reported
for analysis.

T-testing was used to determine statistical significance in the time course analysis
of semantic word processing. The distribution of accuracy timelines across all subjects
was tested against a null hypothesis of 50% accuracy. Statistical significance was con-
sidered at the 5% level. As false positives can arise by chance, false discovery rate
[9] and Bonferroni correction [8] were employed to account for any significant t-values
stemming from random effects.

Figure 2: The figure represents 2D embeddings of abstract and concrete epochs of a single subject. M
is the number of epochs averaged without replacement as feature engineering. It is evident that as M
increases, the variances of the empirical word distributions decrease which improves class separation.
The drawback of this feature engineering approach via averaging is that the number of training samples
in the set decreases which hampers generalization error. This is best exemplified when M = 20 as the
SVM separating hyperplane (depicted as a blue line in the figures) is not positioned well between the two
classes.

3 Results
3.1 Determining the time course of semantic word processing using SVM clas-

sification
The aim of this experiment is to estimate the semantic processing latency period in

human subjects. Fig. 3 depicts the timeline accuracy of word category discrimination
we obtained by applying a SVM on data from magnetometers, gradiometers, EEG and
combined sensor inputs. There are two key observations we can make. Firstly, it is
expected that the classification accuracy prior to 0ms should be 50% as the subjects
have not been shown a word yet. Secondly, there is significant noise in the time course
accuracy signals. Despite this, it can be seen that an accuracy peak is achieved between
∼ 400ms and 600ms.
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Figure 3: The average time course accuracy between word processing brain states across all subjects
for various feature engineering sample sizes and sensor types. A pronounced accuracy peak is achieved
between ∼ 400ms and 600ms. The signals are too noisy to visually identify when word meaning is
initially deciphered. The sample sizes refer to the number of averaged epochs in the feature engineering
procedure.

Employing a t-test with a null hypothesis of 50% accuracy at the 5% significance
level gave many rejected null hypotheses prior to 0ms. Since the subjects were shown
words from the two categories randomly, and could not have expected what words or its
category is coming next, we concluded the rejected null hypotheses prior to 0ms to be
false positives. Consequently, we applied the false discovery rate (FDR) method to limit
the expected proportion of discoveries (rejected null hypotheses) that are false (also at
the 5% level). This procedure gave rise to a new set of FDR-adjusted p-values shown
in fig. 4. The results reveal pronounced clusters of p-values at ∼ 400ms and ∼ 600ms
corresponding to the increase in brain state separability we observed in fig. 3 in the
same time frame. We hypothesize that this phenomenon is indicative of later mental
imagery or decision-related processes.

Identifying the earliest signs of brain state separability proved to be a very difficult
task. Even the FDR-controlled p-values from all sensor type inputs but the EEG data
show false discoveries prior to 0ms. To obtain an upper bound on semantic processing
latency we applied the conservative Bonferroni correction which limits the probability
of having even one false discovery. We set the level of control such that there are
no Bonferroni-adjusted p-values prior to 0ms. In this case the earliest rejected null
hypothesis occurs at ∼ 290ms. This conservative estimate is corroborated by a group
of FDR-adjusted p-values from all sensors at ∼ 235ms and also FDR-adjusted p-values
from EEG sensor data at ∼ 200ms-250ms (see fig. 4). On the other hand, a more
optimistic estimate of semantic word processing latency can be obtained by taking the
first FDR-adjusted p-value after 0ms, which occurs at ∼ 80ms for results from EEG and
all sensors data. Consequently, our data analysis suggests that semantic processing in
the brain occurs approximately ∼80ms-250ms after a word is shown on the screen.

3.2 Comparing classification accuracy for different sensor types
Visual inspection of fig. 3 reveals that MEG contributes more to maximum accuracy

classification than EEG. This enabled us to observe the later accuracy peaks between
∼ 400ms and 600 ms. On the other hand, EEG data gave us the earliest indication of
brain state separability. In addition, FDR-adjusted p-values based on EEG did not suffer
from false discoveries prior to 0ms.
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Figure 4: A plot of FDR≤ 5% adjusted p-values showing rejected null hypotheses. The clusters between
∼ 400ms and 600ms correspond to the increased accuracy in the same time period in fig. 3. The sample
sizes refer to the number of averaged epochs in the feature engineering procedure.

4 Conclusion
We were able to use support vector machine classification, and EEG and MEG data to

discriminate between brain states, corresponding to the semantic processing of abstract
and concrete word categories. We used statistical testing, and false discovery rate and
Bonferroni correction procedures to provide a statistical view on the latency of word
meaning decoding in human subjects. Our results suggest that EEG sensors give the
earliest indication of semantic processing which occurs ∼80ms-250ms after a word is
shown to the subject. MEG sensors provided the best data for brain state separability
with maximum classification accuracy ∼400ms-600ms after a word is shown to the
subject.
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