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-I- INTRODUCTION

Shape optimization : minimize an objective function over a set of

admissibles shapes Ω (including possible constraints)

inf
Ω∈Uad

J(Ω)

The objective function is evaluated through a partial differential equation

(state equation)

J(Ω) =

∫

Ω

j(uΩ) dx

where uΩ is the solution of

PDE(uΩ) = 0 in Ω
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✞

✝

☎

✆
Geometric optimization

Shape Ω ⊂ R
d with boundary ∂Ω = Γ ∪ ΓN ∪ ΓD, where ΓD and ΓN are fixed.

Only Γ is optimized (free boundary).
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✞

✝

☎

✆
Linearized elasticity setting

For given applied loads g : ΓN → R
d, f : Ω → R

d, the displacement

u : Ω → R
d is the solution of





− div (Ae(u)) = f in Ω

u = 0 on ΓD(
Ae(u)

)
n = g on ΓN(

Ae(u)
)
n = 0 on Γ

Typical objective function: the compliance

J(Ω) =

∫

Ω

f · u dx+

∫

ΓN

g · u dx,
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-II- ABOUT UNCERTAINTIES

☞ location, magnitude and orientation of the body forces or surface loads

☞ elastic material’s properties

☞ geometry of the shape (thickness or boundary)

Crucial issue: optimal structures are so optimal for a given set of loads that

they cannot sustain a different load !
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✞

✝

☎

✆
Example: minimal weight and minimal compliance
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✞

✝

☎

✆
Optimal design with load uncertainties
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✞

✝

☎

✆
State of the art: many works !

☞ Probabilistic approach (Ben-Tal et al. 97, Choi et al. 2007,

Frangopol-Maute 2003, Kalsi et al. 2001...)

• Monte-Carlo methods

• Polynomial chaos, Karhunen-Loève expansions...

• First-Order Reliability-based Methods (FORM)

☞ Various objectives or goals:

• Minimization of expected value or mean

• Worst case design

• Minimal failure probability

☞ Special cases with simplifications:

• Robust compliance: Cherkaev-Cherkaeva (1999, 2003), de

Gournay-Allaire-Jouve (2008).

• Mean expectation of compliance: Alvarez-Carrasco 2005,

Dunning-Kim 2013...
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✞

✝

☎

✆
Present work: two approaches

☞ Linearized worst-case approach.

• worst case optimization (min-max problem),

• linearization for small uncertainties (similar idea for control in

Nagy-Braatz 2004, for p.d.e. in Babuska-Nobile-Tempone 2005 and for

optimization in Diehl-Bock-Kostina 2006).

☞ A second-order averaged approach.

• optimization of averaged performance (mean, variance, failure

probability),

• second-order Taylor expansion for small uncertainties.

The goal is to obtain a computationally cheap deterministic setting.
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✞

✝

☎

✆
Worst case design

Example in the case of force uncertainties.

The force is the sum f + ξ where f is known and ξ is unknown.

The only information is the location of ξ and its maximal magnitude m > 0

such that ‖ξ‖ ≤ m.

We replace the standard objective function J(Ω, f + ξ) by its worst case

version J (Ω, f).

Worst case design optimization problem:

min
Ω

J (Ω, f) = min
Ω

max
‖ξ‖≤m

J(Ω, f + ξ)

Uncertainties in shape optimization G. Allaire



13

✞

✝

☎

✆
Averaged performance

Example in the case of force uncertainties.

The force is the sum f(x) + ξ(x, ω) where f is known and ξ is random.

We assume that ξ is small and finite-dimensional in the sense that

ξ(x, ω) =
N∑

i=1

fi(x)ξi(ω)

where ξi are normalized, uncorrelated random variables:
∫

O

ξi(ω)P(dω) = 0,

∫

O

ξi(ω)ξj(ω) P(dω) = δij .

We replace the standard objective function J(Ω, f + ξ) by its mean value.

Averaged performance optimization problem:

min
Ω

{
J (Ω, f) =

∫

O

J(Ω, f + ξ) P(dω)

}
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-III- ABSTRACT WORST-CASE SETTING

☞ Designs h ∈ H

☞ State equation A(h)u(h) = b with a linear operator A(h)

☞ Perturbations δ ∈ P in a Banach space P

☞ Assume for simplicity that only b (not A) depends on δ

☞ Perturbed state equation A(h)u(h, δ) = b(δ)

☞ Worst case objective function

J (h) = sup
δ∈P

||δ||P≤m

J(u(h, δ))

☞ Goal

inf
h∈H

J (h)
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✞

✝

☎

✆Linearization

Assume that the perturbations are small, i.e., m << 1.

☞ Unperturbed case δ = 0, u(h) = u(h, 0)

☞ Derivative of the state equation

A(h)
∂u

∂δ
(h, 0) =

db

dδ
(0)

☞ Linearization of the worst-case objective function

J (h) ≈ J̃ (h) = sup
δ∈P

||δ||P≤m

(
J(u(h)) +

dJ

du
(u(h))

∂u

∂δ
(h, 0)(δ)

)

Since the right hand side is linear in δ we deduce

J̃ (h) = J(u(h)) +m

∣∣∣∣
∣∣∣∣
dJ

du
(u(h))

∂u

∂δ
(h, 0)

∣∣∣∣
∣∣∣∣
P∗
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✞

✝

☎

✆
Adjoint approach

The previous formula for J̃ (h) is not fully explicit:

J̃ (h) = J(u(h)) +m

∣∣∣∣
∣∣∣∣
dJ

du
(u(h))

∂u

∂δ
(h, 0)

∣∣∣∣
∣∣∣∣
P∗

Introduce an adjoint state

A(h)T p(h) =
dJ

du
(u(h)),

from which we deduce

A(h)T p(h)·
∂u

∂δ
(h, 0) = A(h)

∂u

∂δ
(h, 0) · p(h) =

dJ

du
(u(h))·

∂u

∂δ
(h, 0) =

db

dδ
(0) · p(h)

Conclusion:

J̃ (h) = J(u(h)) +m

∣∣∣∣
∣∣∣∣
db

dδ
(0) · p(h)

∣∣∣∣
∣∣∣∣
P∗
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✞

✝

☎

✆
Linearized worst-case design

We add to the usual objective function a perturbation term which is

proportional to m and to the standard adjoint p:

J̃ (h) = J(u(h)) +m

∣∣∣∣
∣∣∣∣
db

dδ
(0) · p(h)

∣∣∣∣
∣∣∣∣
P∗

☞ Classical sensitivity approach can be applied to J̃ (h)

☞ The appearance of the adjoint is not a surprise: it is known to measure

the sensitivity of the optimal value with respect to the constraint level (or

right hand side in the state equation).

☞ The entire argument needs to be made rigorous in each specific case.

☞ We don’t say anything about the existence of optimal designs.

☞ We don’t prove that optimal designs for J̃ (h) are close to those of J (h).
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✞

✝

☎

✆
What remains to be done (in this talk)

Linearized worst-case design optimization:

inf
h∈H

{
J̃ (h) = J(u(h)) +m

∣∣∣∣
∣∣∣∣
db

dδ
(0) · p(h)

∣∣∣∣
∣∣∣∣
P∗

}

where

A(h)u(h) = b(0) and A(h)T p(h) =
dJ

du
(u(h)),

☞ We compute a derivative of J̃ (h): it requires two additional adjoints !

☞ We build a gradient-based algorithm.

☞ We test it on various objective functions.
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-IV- GEOMETRIC OPTIMIZATION

(Worst case design)

First case: loading uncertainties.

Given load f ∈ L2(Rd)d. Unknown load ξ ∈ L2(Rd)d with small norm

‖ξ‖L2(Rd)d ≤ m. Solution uΩ,ξ of





− div (Ae(uΩ,ξ)) = f + ξ in Ω

uΩ,ξ = 0 on ΓD(
Ae(uΩ,ξ)

)
n = g on ΓN(

Ae(uΩ,ξ)
)
n = 0 on Γ

Many variants are possible (ξ may be localized, or parallel to a fixed vector, or

on ΓN , etc.)
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Theorem.

J̃ (Ω) =

∫

Ω

j(0, uΩ) dx+m||∇f j(0, uΩ)− pΩ||L2(Ω)d ,

where pΩ is the first adjoint state, defined by





−div(Ae(pΩ)) = −∇uj(0, uΩ) in Ω,

pΩ = 0 on ΓD,

Ae(pΩ)n = 0 on Γ ∪ ΓN .

If ∇f j(0, uΩ)− pΩ 6= 0 in L2(Ω)d, then J̃ is shape differentiable

J̃ ′(Ω)(θ) =

∫

Γ

(
j(0, uΩ) +Ae(uΩ) : e(pΩ)− pΩ · f

)
θ · n ds

+ m
2||∇f j(0,uΩ)−pΩ||

L2(Ω)d

∫

Γ

θ · n
(
|∇f j(0, uΩ)− pΩ|

2−zΩ · f

+∇uj(0, uΩ) · qΩ +Ae(uΩ) : e(zΩ) +Ae(pΩ) : e(qΩ)
)
ds,
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The second and third adjoint states qΩ, zΩ are defined by





−div(Ae(qΩ)) = −2 (pΩ −∇f j(0, uΩ)) in Ω,

qΩ = 0 on ΓD,

Ae(qΩ)n = 0 on ΓN ,





−div(Ae(zΩ)) = −∇2
uj(uΩ)qΩ − 2∇f∇uj(uΩ)

T (∇f j(uΩ)− pΩ) in Ω,

zΩ = 0 on ΓD,

Ae(zΩ)n = 0 on ΓN .
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Second case: geometric uncertainties.

Perturbed shapes (I + χV )(Ω), V ∈ W 1,∞(Rd,Rd), ||V ||L∞(Rd)d≤ m.

χ is a smooth localizing function such that χ ≡ 0 on ΓD ∪ ΓN .

Uncertainties in shape optimization G. Allaire
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Theorem.

The linearized worst-case design objective function is

J̃ (Ω) =

∫

Ω

j(uΩ) dx+m

∫

Γ

χ
∣∣∣j(uΩ) + Ae(uΩ) : e(pΩ)− f · pΩ

∣∣∣ ds,

where pΩ is the (previous) adjoint state.

If EΓ := {x ∈ Γ, (j(uΩ) +Ae(uΩ) : e(pΩ)− f · pΩ) (x) = 0} has zero Lebesgue

measure, then it admits a (hugly) shape derivative J̃ ′(Ω)(θ) involving two

(new) additional adjoints qΩ, zΩ.
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✞

✝

☎

✆
Load uncertainties in geometric optimization (compliance)

Uncertainties in shape optimization G. Allaire
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✞

✝

☎

✆
Load uncertainties in geometric optimization (compliance)
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✞

✝

☎

✆
Geometric uncertainties in geometric optimization
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✞

✝

☎

✆
Geometric uncertainties (stress minimization)
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-V- A SECOND-ORDER AVERAGED OPTIMIZATION

☞ One limitation of the linearization process: the worst perturbation is

always symmetric.

☞ Worst-case design is pessimistic.

☞ Another approach: optimization of the mean and/or variance of an

objective function under a random distribution of uncertainties.

✃ Assumption of small uncertainties: second-order Taylor expansion.

✃ Only the mean and variance of the random distribution are required.

✃ Higher CPU cost (proportional to the number of uncorrelated random

variables).
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✄

✂

�

✁Abstract framework

• The performance of a design h is evaluated by a cost C ≡ C(f, uh,f ),

• which involves a state uh,f , solution to a physical system:

A(h)uh,f = b(f),

• where, for simplicity, the uncertain data f acts on the right-hand side

f(x, ω) = f0(x) + f̂(x, ω)

where f0 is known and f̂ is random.

• We replace the standard cost function C(f, uh,f ) by its mean value: the

averaged performance optimization problem:

M(h) =

∫

O

C(f0 + f̂(ω), u
h,f0+f̂(ω)) P(dω)

Uncertainties in shape optimization G. Allaire
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✞

✝

☎

✆
Working hypotheses

• Perturbations are small: depending on the context, this may mean:

– f̂ ∈ L∞(O,P): all the realizations f̂(ω) ∈ P are small.

– f̂ ∈ Lp(O,P), for p < ∞: f̂ may have unprobably large realizations.

• Perturbations are finite-dimensional:

f̂(x, ω) =
N∑

i=1

fi(x)ξi(ω),

where fi ∈ P , and the ξi are normalized, uncorrelated random variables:
∫

O

ξi(ω)P(dω) = 0,

∫

O

ξi(ω)ξj(ω) P(dω) = δi,j .

Example: f̂ is obtained as a truncated Karhunen-Loève expansion.
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✞

✝

☎

✆
Strategy

• Calculate approximate functionals M̃(h) which are

– deterministic: no random variable or probabilistic integral is involved.

– consistent with their exact counterparts, i.e. the differences

|M(h)− M̃(h)| are ‘small’.

• Calculate their derivatives M̃′(h)(ĥ),

• Minimize the approximate functionals M̃(h) (under constraints), by using

gradient algorithms.
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✞

✝

☎

✆
2nd order Taylor expansion

Use the smallness of perturbations to perform a second-order Taylor

expansion of the mappings f 7→ uh,f and f 7→ C(f, uh,f ) around f0:

u
h,f0+f̂

≈ uh + u1
h(f̂) +

1
2u

2
h(f̂ , f̂),

where A(h)u1
h(f̂) =

∂b

∂f
(f0)(f̂), and A(h)u2

h(f̂ , f̂) =
∂2b

∂f2
(f0)(f̂ , f̂).

C(f0 + f̂ , u
h,f0+f̂

) ≈ C(f0, uh) + Lh(f̂) +
1
2Bh(f̂ , f̂),

where the linear and bilinear forms Lh and Bh read:

Lh(f̂) =
∂C

∂f
(f0, uh)(f̂) +

∂C

∂u
(f0, uh)(u

1
h(f̂)),

Bh(f̂ , f̂) =
∂2C

∂f2
(f0, uh)(f̂ , f̂) + 2

∂2C

∂f∂u
(f0, uh)(f̂ , u

1
h(f̂))

+
∂2C

∂u2
(f0, uh)(u

1
h(f̂), u

1
h(f̂)) +

∂C

∂u
(f0, uh)(u

2
h(f̂ , f̂)).
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✞

✝

☎

✆
Approximation of moment functionals

• Replacing the cost with its second-order expansion gives rise to the

approximate mean-value functional:

M̃(h) = C(f0, uh) +

∫

O

Lh(f̂(ω)) P(dω) +
1

2

∫

O

Bh(f̂(ω), f̂(ω)) P(dω).

• Using the structure of perturbations f̂(ω) =
∑N

i=1 fiξi(ω), it comes:

M̃(h) = C(f0, uh) +
1
2

∑N

i=1 Bh(fi, fi),

a formula which involves the calculation of the N + 2 ‘reduced states’:

uh, uh,i := u1
h(fi), (i = 1, ..., N), and u2

h :=

N∑

i=1

u2
h(fi, fi).

• This approach can be applied to other moments of C, e.g. its variance:

V(h) =

∫

O

(
C(f0 + f̂(ω), u

h,f0+f̂(ω))−M(h)
)2

P(dω).
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✞

✝

☎

✆
What remains to be done (in this talk)

2nd-order averaged optimization:

inf
h∈H

{
M̃(h) = C(f0, uh) +

1

2

N∑

i=1

Bh(fi, fi)

}

☞ Similar (in CPU cost) to a (N + 2)-multiple loads optimization.

☞ Prove that M̃(h) is closed to M(h).

☞ Compute a derivative of M̃(h): it requires (N + 2) adjoints.

☞ Build a gradient-based algorithm.

☞ Test it on various objective functions.
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-VI- GEOMETRIC OPTIMIZATION

☞ Random loads.

☞ Uncertainties in the material properties.

☞ Geometric uncertainties.
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