A lower semicontinuity result for a free discontinuity functional with a boundary term

Stefano Almi

SISSA

December 18, 2015

joint work with G. Dal Maso and R. Toader

→ < 글 → < 글 →</p>

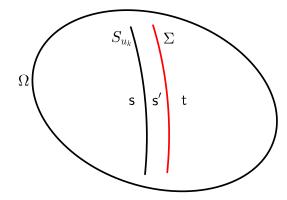
크

Let Ω be a bounded open subset of \mathbb{R}^n with Lipschitz buondary and let $p \in (1, +\infty)$. We study the lower semicontinuity in $GSBV^p(\Omega; \mathbb{R}^m)$ of the functional

$$\mathcal{F}(u) := \int_{S_u \setminus \Sigma} \psi(x, \nu_u) \, \mathrm{d}\mathcal{H}^{n-1} + \int_{\Sigma} g(x, u^+, u^-) \, \mathrm{d}\mathcal{H}^{n-1} \,,$$

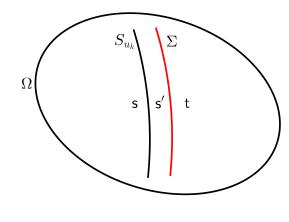
where $\Sigma \subseteq \overline{\Omega}$ is an orientable Lipschitz manifold of dimension n-1, S_u denotes the jump set of u, ν_u stands for the approximate unit normal to S_u , and u^+ and u^- are the traces of u on the two sides of Σ , defined accordingly to the orientation of the unit normal ν_{Σ} to Σ .

A B A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A



Stefano Almi (SISSA)

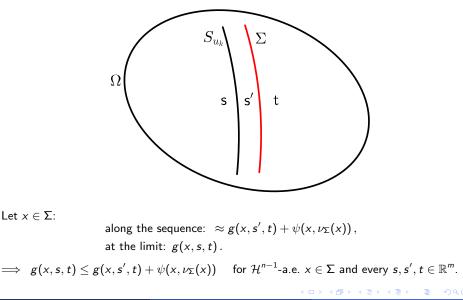
イロン イロン イヨン イヨン



Let $x \in \Sigma$:

along the sequence: $\approx g(x, s', t) + \psi(x, \nu_{\Sigma}(x))$, at the limit: g(x, s, t).

・ロト ・日下・ ・ ヨト・



Assume that $\psi \colon \overline{\Omega} \times \mathbb{R}^n \to [0, +\infty)$ is a continuous function such that:

- $\psi(x, \cdot)$ is a norm in \mathbb{R}^n for every $x \in \overline{\Omega}$;
- there exist $0 < c_1 \leq c_2$ such that for every $x \in \overline{\Omega}$ and every $\nu \in \mathbb{R}^n$

 $c_1|\nu| \leq \psi(x,\nu) \leq c_2|\nu|$.

A B A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Assume that $\psi \colon \overline{\Omega} \times \mathbb{R}^n \to [0, +\infty)$ is a continuous function such that:

- $\psi(x, \cdot)$ is a norm in \mathbb{R}^n for every $x \in \overline{\Omega}$;
- there exist $0 < c_1 \leq c_2$ such that for every $x \in \overline{\Omega}$ and every $\nu \in \mathbb{R}^n$

$$c_1|\nu| \leq \psi(x,\nu) \leq c_2|\nu|$$
.

Suppose that $g: \Sigma \times \mathbb{R}^m \times \mathbb{R}^m \to \mathbb{R}$ satisfies:

- g is Borel;
- $g(\cdot, 0, 0) \in L^1(\Sigma);$
- $g(x, \cdot, \cdot)$ is lower semicontinuous on $\mathbb{R}^m \times \mathbb{R}^m$ for \mathcal{H}^{n-1} -a.e. $x \in \Sigma$;
- for \mathcal{H}^{n-1} -a.e. $x \in \Sigma$ and every $s, s', t, t' \in \mathbb{R}^m$:

 $g(x,s,t) \leq g(x,s',t) + \psi(x,\nu_{\Sigma}(x)) \quad \text{and} \quad g(x,s,t) \leq g(x,s,t') + \psi(x,\nu_{\Sigma}(x)) \,.$

< < >> < <</p>

Assume that $\psi \colon \overline{\Omega} \times \mathbb{R}^n \to [0, +\infty)$ is a continuous function such that:

- $\psi(x, \cdot)$ is a norm in \mathbb{R}^n for every $x \in \overline{\Omega}$;
- there exist $0 < c_1 \leq c_2$ such that for every $x \in \overline{\Omega}$ and every $\nu \in \mathbb{R}^n$

$$c_1|\nu| \leq \psi(x,\nu) \leq c_2|\nu|$$
.

Suppose that $g: \Sigma \times \mathbb{R}^m \times \mathbb{R}^m \to \mathbb{R}$ satisfies:

- g is Borel;
- $g(\cdot, 0, 0) \in L^1(\Sigma);$
- $g(x, \cdot, \cdot)$ is lower semicontinuous on $\mathbb{R}^m \times \mathbb{R}^m$ for \mathcal{H}^{n-1} -a.e. $x \in \Sigma$;
- for \mathcal{H}^{n-1} -a.e. $x \in \Sigma$ and every $s, s', t, t' \in \mathbb{R}^m$:

 $g(x,s,t) \leq g(x,s',t) + \psi(x,\nu_{\Sigma}(x)) \quad \text{and} \quad g(x,s,t) \leq g(x,s,t') + \psi(x,\nu_{\Sigma}(x)) \,.$

Theorem (A., Dal Maso, Toader)

Under the above assumptions on ψ and g, the functional \mathcal{F} is lower semicontinuous with respect to the weak convergence in $GSBV^{p}(\Omega; \mathbb{R}^{m})$.

Relaxation result

Assume that $g: \Sigma \times \mathbb{R}^m \times \mathbb{R}^m \to \mathbb{R}$ is a Carathéodory function such that:

- $g(x, \cdot, \cdot)$ is uniformly continuous on $\mathbb{R}^m \times \mathbb{R}^m$ for \mathcal{H}^{n-1} -a.e. $x \in \Sigma$;
- there exists $a \in L^1(\Sigma)$ such that $|g(x, s, t)| \le a(x)$ for \mathcal{H}^{n-1} -a.e. $x \in \Sigma$ and every $s, t \in \mathbb{R}^m$.

A B A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Relaxation result

Assume that $g: \Sigma \times \mathbb{R}^m \times \mathbb{R}^m \to \mathbb{R}$ is a Carathéodory function such that:

- $g(x, \cdot, \cdot)$ is uniformly continuous on $\mathbb{R}^m \times \mathbb{R}^m$ for \mathcal{H}^{n-1} -a.e. $x \in \Sigma$;
- there exists $a \in L^1(\Sigma)$ such that $|g(x, s, t)| \le a(x)$ for \mathcal{H}^{n-1} -a.e. $x \in \Sigma$ and every $s, t \in \mathbb{R}^m$.

Theorem (A., Dal Maso, Toader)

For every $u \in GSBV^p(\Omega; \mathbb{R}^m)$

$$sc^{-}\mathcal{F}(u) = \int_{S_{u}\setminus\Sigma} \psi(x,\nu_{u}) \,\mathrm{d}\mathcal{H}^{n-1} + \int_{\Sigma} g_{12}(x,u^{+},u^{-}) \,\mathrm{d}\mathcal{H}^{n-1}$$

where we have set

$$\begin{split} g_{12}(x,s,t) &:= \{g_1(x,s,t)\,, \inf_{\tau\in\mathbb{R}^m} g_1(x,s,\tau) + \psi(x,\nu_\Sigma(x))\}\\ g_1(x,s,t) &:= \{g(x,s,t)\,, \inf_{\sigma\in\mathbb{R}^m} g(x,\sigma,t) + \psi(x,\nu_\Sigma(x))\}\,. \end{split}$$

Relaxation result

Assume that $g: \Sigma \times \mathbb{R}^m \times \mathbb{R}^m \to \mathbb{R}$ is a Carathéodory function such that:

- $g(x, \cdot, \cdot)$ is uniformly continuous on $\mathbb{R}^m \times \mathbb{R}^m$ for \mathcal{H}^{n-1} -a.e. $x \in \Sigma$;
- there exists $a \in L^1(\Sigma)$ such that $|g(x, s, t)| \le a(x)$ for \mathcal{H}^{n-1} -a.e. $x \in \Sigma$ and every $s, t \in \mathbb{R}^m$.

Theorem (A., Dal Maso, Toader)

For every $u \in GSBV^p(\Omega; \mathbb{R}^m)$

$$sc^{-}\mathcal{F}(u) = \int_{S_{u}\setminus\Sigma} \psi(x,\nu_{u}) \,\mathrm{d}\mathcal{H}^{n-1} + \int_{\Sigma} g_{12}(x,u^{+},u^{-}) \,\mathrm{d}\mathcal{H}^{n-1}$$

where we have set

$$egin{aligned} g_{12}(x,s,t) &:= \left\{g_1(x,s,t)\,,\, \inf_{ au\in\mathbb{R}^m}g_1(x,s, au) + \psi(x,
u_\Sigma(x))
ight\}\,, \ g_1(x,s,t) &:= \left\{g(x,s,t)\,,\, \inf_{\sigma\in\mathbb{R}^m}g(x,\sigma,t) + \psi(x,
u_\Sigma(x))
ight\}\,. \end{aligned}$$

Remark

For \mathcal{H}^{n-1} -a.e. $x \in \Sigma$ and every $s, s', t, t' \in \mathbb{R}^m$

 $g_{12}(x,s,t) \leq g_{12}(x,s',t) + \psi(x,\nu_{\Sigma}(x)) \quad \text{and} \quad g_{12}(x,s,t) \leq g_{12}(x,s,t') + \psi(x,\nu_{\Sigma}(x)) \,.$

Let $W: \Omega \times \mathbb{R}^{m \times n} \to \mathbb{R}$ and $f: \Omega \times \mathbb{R}^m \to \mathbb{R}$ be Carathéodory functions such that

- $W(x, \cdot)$ is quasiconvex;
- there exist $0 < a_1 \leq a_2$ and $b_1, b_2 \in L^1(\Omega)$ such that

 $a_1|\xi|^p-b_1(x)\leq W(x,\xi)\leq a_2|\xi|^p+b_2(x)$;

• there exist $q \in (1,+\infty), \ 0 < a_3 \leq a_4,$ and $b_3, b_4 \in L^1(\Omega)$ such that

$$a_3|s|^p - b_3(x) \le f(x,s) \le a_4|s|^q + b_4(x)$$
.

Let $W: \Omega \times \mathbb{R}^{m \times n} \to \mathbb{R}$ and $f: \Omega \times \mathbb{R}^m \to \mathbb{R}$ be Carathéodory functions such that

- $W(x, \cdot)$ is quasiconvex;
- there exist $0 < a_1 \leq a_2$ and $b_1, b_2 \in L^1(\Omega)$ such that

 $a_1|\xi|^p-b_1(x)\leq W(x,\xi)\leq a_2|\xi|^p+b_2(x)$;

• there exist $q \in (1,+\infty)$, $0 < a_3 \leq a_4$, and $b_3, b_4 \in L^1(\Omega)$ such that

$$a_3|s|^p - b_3(x) \le f(x,s) \le a_4|s|^q + b_4(x)$$
.

We define

$$\mathcal{G}(u) := \int_{\Omega} W(x, \nabla u) \, \mathrm{d}x + \int_{\Omega} f(x, u) \, \mathrm{d}x + \int_{S_u \setminus \Sigma} \psi(x, \nu_u) \, \mathrm{d}\mathcal{H}^{n-1} + \int_{\Sigma} g(x, u^+, u^-) \, \mathrm{d}\mathcal{H}^{n-1}$$

for $u \in GSBV^p(\Omega; \mathbb{R}^m) \cap L^q(\Omega; \mathbb{R}^m)$ and $\mathcal{G}(u) := +\infty$ if $u \in L^q(\Omega; \mathbb{R}^m) \setminus GSBV^p(\Omega; \mathbb{R}^m)$.

< ロ > < 同 > < 回 > < 回 >

Theorem (A., Dal Maso, Toader)

$$\begin{split} \mathsf{sc}^{-}\mathcal{G}(u) &= \int_{\Omega} W(x, \nabla u) \, \mathrm{d}x + \int_{\Omega} f(x, u) \, \mathrm{d}x + \int_{\mathcal{S}_{u} \setminus \Sigma} \psi(x, \nu_{u}) \, \mathrm{d}\mathcal{H}^{n-1} \\ &+ \int_{\Sigma} g_{12}(x, u^{+}, u^{-}) \, \mathrm{d}\mathcal{H}^{n-1} \end{split}$$

for $u \in GSBV^{p}(\Omega; \mathbb{R}^{m}) \cap L^{q}(\Omega; \mathbb{R}^{m})$ and $sc^{-}\mathcal{G}(u) = +\infty$ if $u \in L^{q}(\Omega; \mathbb{R}^{m}) \setminus GSBV^{p}(\Omega; \mathbb{R}^{m})$.

・ロト ・回ト ・ヨト ・

Thanks for your attention!

Image: A mathematical and A mathematica A mathematical and A mathem