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A quasilinear bistable equation in cylinders
Let ω ⊂ RN−1 be a bounded domain (N ≥ 1). We consider the equation

div

 ∇u√
1− |∇u|2

 = W ′(u), in R× ω,

with the boundary conditions

lim
x→±∞

(
u(x, y), ∂xu(x, y)

)
= (±1, 0), uniformly in y ∈ ω,

where W is a double well potential

I W ∈ C1(R),

I W (−1) = W (1) = 0 and W (s) > 0 if s 6= ±1.

Example: the potential for the Allen-Cahn equation W (s) = 1
4

(
1− s2

)2
Goal: We look for solutions connecting the equilibria u = −1 and u = +1
along the first coordinate.
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Minkowski curvature operator
Newton’s Second Law of Motion:

F = ma =
d

dt
(mv) =

(
mu′

)′
Special Theory of Relativity: the mass of a body increases with velocity

m =
m0√

1− v2/c2

where m0 = rest mass and c = 3× 108m/s = the speed of light.
With the normalization m0 = c = 1, we recover the equation

F =

 u′√
1− |u′|2

′
[The Feynman Lectures on Physics 1964]

Riemannian Geometry: Represents the local mean curvature of
hypersurfaces in the Lorentz-Minkowski space LN+1 with coordinates
(x1, . . . , xN , t) and the metric

∑N
j=1(dxj)

2 − (dt)2.
[Bartnik Simon 1982]
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A minimal energy solution

Our approach will be variational:

We will look for a transition from the equilibrium state u = −1 to the
equilibrium state u = +1 minimising the energy functional of
Ginzburg-Landau type

J(u) =

∫
R×ω

1−
√

1− |∇u|2 dx̄+

∫
R×ω

W (u) dx̄

in the functional space

X =
{
u ∈W 1,∞(R× ω) |

‖∇u‖∞ ≤ 1 and lim
x→±∞

u(x, y) = ±1 uniformly in y ∈ ω
}
.
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Our main result

Theorem

The energy functional J attains its infimum in X . Its minimiser u depends
only on the first variable x ∈ R, is non-decreasing and is the unique
solution, up to translations, of the equation

div

 ∇u√
1− |∇u|2

 = W ′(u), in R× ω,

satisfying the boundary conditions

lim
x→±∞

(
u(x, y), ∂xu(x, y)

)
= (±1, 0), uniformly in y ∈ ω.

Moreover, u satisfies the conservation of energy law

1− 1√
1− |u′|2

+W (u) = 0.
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Idea of the proof

The proof will be done in 3 steps:

Step 1 we use a monotone rearrangement to prove that minimising
sequences of J in X can be assumed to depend only on the first variable,

Step 2 we prove the existence of a one-dimensional minimiser with
‖∇u‖∞ < 1 and a law of conservation of energy,

Step 3 we use a regularisation scheme to exclude the existence of
N-dimensional minimisers.

Uniqueness (up to translations) follows from the conservation of energy.
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Step 1: Monotone rearrangement

Idea: to reorganize the level sets of u in order to obtain a one-dimensional,
non-decreasing function u? passing through zero.

For any function u : R× ω → [−1, 1], we define the level sets of u by

Ωc =

{
{(x, y) ∈ R× ω | c < u(x, y) < 0} if − 1 ≤ c < 0,

{(x, y) ∈ R× ω | 0 ≤ u(x, y) ≤ c} if 0 ≤ c ≤ 1.

We define a rearrangement u? : R× ω → [−1, 1] of u through its level sets

Ω?
c =


]
− mN (Ωc)
mN−1(ω) , 0

[
× ω if − 1 ≤ c < 0,[

0, mN (Ωc)
mN−1(ω)

]
× ω if 0 ≤ c ≤ 1.

This generalisation of the classical monotone rearrangement for functions
of a single variable was introduced and discussed in

[Carbou 1995, Farina 1999, Alberti 2000]
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Step 1: Monotone rearrangement

Figure: On the left a function u ∈ X and its rearrangement u? on the right.

I The level sets of u? are all cylinders and mN (Ω?
c) = mN (Ωc).

I u? is one-dimensional, non-decreasing, continuous and u?(0, y) = 0
for all y ∈ ω. Thus, we will use the notation u?(x) = u?(x, y).
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Step 1: Properties of the rearrangement

Theorem (Pólya-Szegö type theorem [Alberti 2000, Theorem 2.10])

Let g : [0,+∞)→ [0,+∞) be convex, g(0) = 0 and strictly increasing.
Then for every u ∈ X taking values in [−1, 1], we have∫

R×ω
g(|∇u?|) ≤

∫
R×ω

g(|∇u|).

Moreover, if the left-hand side is finite, equality holds if and only if there
exists a ∈ R such that u(x+ a) = u?(x) for every x ∈ R.

Lemma (Bound on the gradient)

Assume that u ∈ X , takes values in [−1, 1] and |∇u| ∈ L2(R× ω).
Then u? ∈ X and

‖∇u?‖∞ ≤ ‖∇u‖∞ .
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Step 1: Properties of the rearrangement

Theorem (Kinetic energy)

For all u ∈ X taking values in [−1, 1] and such that |∇u| ∈ L2(R× ω),
we have ∫

R×ω
1−

√
1− |∇u?|2 dx̄ ≤

∫
R×ω

1−
√

1− |∇u|2 dx̄.

Moreover, if the left-hand side is finite and ‖∇u‖∞ < 1, we have equality
if and only if there exists a ∈ R such that u(x+ a) = u?(x) for all x ∈ R.
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Step 1: Idea of the proof
[Alberti 2000, Theorem 2.10] can be applied to the truncated functions gn

Figure: blue = the potential 1−
√

1− s2, green = the modified gn(s).

For all n ∈ N,

∫
R×ω

gn(|∇u?|) dx̄ ≤
∫
R×ω

gn(|∇u|) dx̄

|∇u| ∈ L2 + Lebesgue’s dominated convergence =⇒∫
R×ω

1−
√

1− |∇u?|2 dx̄ ≤
∫
R×ω

1−
√

1− |∇u|2 dx̄.
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Step 1: Properties of the rearrangement

Theorem (Cavalieri’s Principle)

For every continuous function F : [−1, 1]→ R and every function
u : Ω→ [−1, 1], we have∫

Ω
F (u) dx̄ =

∫
Ω

?
F (u?) dx̄.
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Step 1: Properties of the rearrangement

Combining the previous results, we obtain the following theorem:

Theorem (Energy of the rearrangement)

For all u ∈ X taking values in [−1, 1] such that |∇u| ∈ L2(R× ω), there
exists u? ∈ X depending only on x and non-decreasing such that

J(u?) =

∫
R×ω

1−
√

1− |∇u?|2 dx̄+

∫
R×ω

W (u?) dx̄ ≤∫
R×ω

1−
√

1− |∇u|2 dx̄+

∫
R×ω

W (u) dx̄ = J(u).

Moreover, if the left-hand side is finite and ‖∇u‖∞ < 1, we have equality
if and only if there exists a ∈ R such that u(x+ a) = u?(x) for all x ∈ R.
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Step 2: Existence of a one-dimensional minimiser

Let (uk) ⊂ X be a minimising sequence such that −1 ≤ uk ≤ 1.

Passing to the rearranged functions u?k, if necessary, we may assume that
the functions uk are one-dimensional, non-decreasing and that uk(0) = 0.

For this sequence J(uk) = mN−1(ω)J1(uk), where

J1(u) =

∫
R

1−
√

1− |u′(x)|2 dx+

∫
R
W (u(x)) dx.

Claim 1: J1 attains its infimum in the corresponding one-dimensional space

X1 =
{
u ∈W 1,∞(R) |

∥∥u′∥∥∞ ≤ 1 and lim
x→±∞

u(x) = ±1
}
.
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Step 2: Existence of a one-dimensional minimiser

We have: sup ‖uk‖∞ ≤ 1, sup ‖u′k‖∞ ≤ 1 and sup ‖u′k‖L2 is bounded.

Ascoli-Arzelà’s Theorem and a diagonal procedure =⇒ ∃ u ∈W 1,∞(R)
such that

uk → u in Cloc(R) and u′k ⇀ u′ in L2(R).

u is non-decreasing, bounded in [−1, 1], u(0) = 0 and ‖u′‖∞ ≤ 1.

By weak lower semicontinuity of the kinetic part and Fatou’s lemma

J1(u) ≤ lim inf

∫
R

1−
√

1−
∣∣u′k∣∣2 dt+ lim inf

∫
R
W (uk) dt

= limJ1(uk) = inf
X1

J1.

In addition, lim
x→±∞

u(x) = ±1 =⇒ u ∈ X1. Therefore, J1(u) = min
X1

J1.
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Step 2: Existence of a one-dimensional minimiser

Claim 2: If u is a minimiser of J1 in X1 =⇒ ‖u′‖∞ < 1

Proof of the claim
For fixed x0 < x1 and 0 < θ < 1, we define the stretching uθ of u as

150 100 50 0 50 100 150

1

0.5

0

0.5

1

Figure: Graphs of u (in blue) and uθ (in green).

It is easily seen that uθ ∈ X1 and J1(u) ≤ J1(uθ).
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Step 2: Existence of a one-dimensional minimiser

From J1(u) ≤ J1(uθ) we obtain an uniform estimate on the derivative of u

∣∣u′∣∣ ≤√1− 1(
1 +W (u)

)2 ≤
√√√√1− 1(

1 + max
[−1,1]

W
)2 < 1.

So, ‖u′‖∞ ≤ 1− ε < 1.

Now, we can use the weak formulation =⇒ u ∈ C2(R), is a solution of
the BVP and satisfies the conservation of energy law

1− 1√
1− |u′|2

+W (u) = 0.

Uniqueness (up to translations) follows from the law of conservation of
energy.
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Step 3: Excluding N -dimensional minimisers

Claim 3: The functional J has no minimisers with ‖∇u‖∞ = 1.

Proof of the claim
Suppose that u0 ∈ X is a minimiser of J with ‖∇u‖∞ = 1.

Recall the truncated function gn

Figure: blue = the potential 1−
√

1− s2, green = the modified gn(s).
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Step 3: Excluding N -dimensional minimisers

The Direct Method of the Calculus of Variations can be applied to the
modified functional

Jn(u) =

∫
R×ω

gn(u′) dx̄+

∫
R×ω

W (u) dx̄.

Arguing as above, we see that

Jn has a one-dimensional minimiser un ∈ X with ‖u′‖∞ < 1.

For a good choice of n, the minimiser un is on the region where the
functional was not modified. Therefore,

J(un) = Jn(un) ≤ Jn(u0) < J(u0),

which contradicts the minimality of u0.
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Conclusion

The functional

J(u) =

∫
R×ω

1−
√

1− |∇u|2 +W (u) dx̄

has a unique (up to translations) one-dimensional minimiser in X , which
satisfies the estimate ‖u′‖∞ ≤ c < 1 and is a classical solution of the BVP u′√

1− |u′|2

′ = W ′(u), in R,

lim
x→±∞

(
u(x), u′(x)

)
= (±1, 0).
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Nonautonomous problems
The same ideas can be applied to problems of the form u′√

1− |u′|2

′ = a(t)W ′(u), in R,

lim
x→±∞

(
u(x), u′(x)

)
= (±1, 0).

Theorem

I IF 0 ≤ a1 ≤ a(t) ≤ a2 and a(t) < a2 in some nonempty set,

I OR IF a(t) ≥ 0 is T -periodic, for some T > 0,

then the energy functional

L(u) =

∫
R

1−
√

1− |u′|2 + a(t)W (u) dt

attains its infimum in the space

X1 =
{
u ∈W 1,∞(R) |

∥∥u′∥∥∞ ≤ 1 and lim
x→±∞

u(x) = ±1
}
.
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Nonautonomous problems

Lemma

If u is a minimiser of L in X1 and there exists c > 0 such that a′(t) ≤ ca(t)
then ‖u′‖∞ < 1 and u is a solution of the nonautonomous BVP.

Idea of the proof
From L(u) ≤ L(uθ), we obtain∣∣u′(t)∣∣ ≤√1− 1

1 + a(t)W (u(t)) +
∫ +∞
t a′(s)W (u(s)) ds

a.e. t ∈ R.

u is a minimiser of L =⇒
∫
R
a(t)W (u(t)) dt ≤ C

∃ c > 0: a′(t) ≤ ca(t) =⇒∫ +∞

t
a′(s)W (u) ds ≤

∫ +∞

t
c a(s)W (u) ds < +∞

So ‖u′‖∞ ≤ 1− ε < 1 and u is a solution of the nonautonomous BVP.
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A problem with symmetry

Theorem (Antisymmetric problem)

If
I W (s) and a(t) are even functions,

I a(t) is non-decreasing in [0,+∞[ and lim inft→∞ a(t) > 0,

I there exists c > 0 such that a′(t) ≤ ca(t),

then there exists an antisymmetric heteroclinic to the nonautonomous BVP.

Idea of the proof

Minimisation in the subset of X1 of antisymmetric functions.

Open problem: Is the global minimiser of L in X1 antisymmetric ?
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