Heteroclinics for a mean curvature problem in Lorentz-Minkowski space

Isabel Coelho

Instituto Superior de Engenharia de Lisboa Joint work with D. Bonheure and M. Nys

> CVA WORKSHOP 17 December 2015

A quasilinear bistable equation in cylinders

Let $\omega \subset \mathbb{R}^{N-1}$ be a bounded domain $(N \ge 1)$. We consider the equation

$$\operatorname{div}\left(\frac{\nabla u}{\sqrt{1-|\nabla u|^2}}\right) = W'(u), \quad \text{ in } \mathbb{R} \times \omega,$$

with the boundary conditions

$$\lim_{x\to\pm\infty} \big(u(x,y),\partial_x u(x,y)\big) = (\pm 1,0), \quad \text{ uniformly in } y\in\omega,$$

where W is a double well potential

- $ightharpoonup W \in C^1(\mathbb{R}),$
- W(-1) = W(1) = 0 and W(s) > 0 if $s \neq \pm 1$.

Example: the potential for the Allen-Cahn equation $W(s)=\frac{1}{4}\big(1-s^2\big)^2$

Goal: We look for solutions connecting the equilibria u=-1 and u=+1 along the first coordinate.

Isabel Coelho (ISEL) FCT, 17 December 2015

2 / 24

Minkowski curvature operator

Newton's Second Law of Motion:

$$F = ma = \frac{d}{dt}(mv) = (mu')'$$

Special Theory of Relativity: the mass of a body increases with velocity

$$m = \frac{m_0}{\sqrt{1 - v^2/c^2}}$$

where $m_0=$ rest mass and $c=3\times 10^8 m/s=$ the speed of light. With the normalization $m_0=c=1$, we recover the equation

$$F = \left(\frac{u'}{\sqrt{1 - |u'|^2}}\right)'$$

[The Feynman Lectures on Physics 1964]

Riemannian Geometry: Represents the local mean curvature of hypersurfaces in the Lorentz-Minkowski space \mathbb{L}^{N+1} with coordinates (x_1,\ldots,x_N,t) and the metric $\sum_{j=1}^N (dx_j)^2 - (dt)^2$. [Bartnik Simon 1982]

Isabel Coelho (ISEL) FCT, 17 December 2015 3 / 24

A minimal energy solution

Our approach will be variational:

We will look for a transition from the equilibrium state u=-1 to the equilibrium state u=+1 minimising the *energy functional of Ginzburg-Landau type*

$$J(u) = \int_{\mathbb{R} \times \omega} 1 - \sqrt{1 - |\nabla u|^2} \ d\bar{x} + \int_{\mathbb{R} \times \omega} W(u) \ d\bar{x}$$

in the functional space

$$\mathcal{X} = \Big\{ u \in W^{1,\infty}(\mathbb{R} \times \omega) \mid \\ \|\nabla u\|_{\infty} \leq 1 \ \text{ and } \lim_{x \to \pm \infty} u(x,y) = \pm 1 \text{ uniformly in } \mathbf{y} \in \omega \Big\}.$$

Isabel Coelho (ISEL) FCT, 17 December 2015 4 / 24

Our main result

Theorem

The energy functional J attains its infimum in \mathcal{X} . Its minimiser u depends only on the first variable $x \in \mathbb{R}$, is non-decreasing and is the unique solution, up to translations, of the equation

$$\operatorname{div}\left(\frac{\nabla u}{\sqrt{1-\left|\nabla u\right|^{2}}}\right)=W'(u),\quad \text{ in } \mathbb{R}\times\omega,$$

satisfying the boundary conditions

$$\lim_{x \to \pm \infty} (u(x,y), \partial_x u(x,y)) = (\pm 1, 0), \quad \text{uniformly in } y \in \omega.$$

Moreover, u satisfies the conservation of energy law

$$1 - \frac{1}{\sqrt{1 - |u'|^2}} + W(u) = 0.$$

Isabel Coelho (ISEL) FCT, 17 December 2015

5 / 24

Our main result

Theorem

The energy functional J attains its infimum in \mathcal{X} . Its minimiser u depends only on the first variable $x \in \mathbb{R}$, is non-decreasing and is the unique solution, up to translations, of the equation

$$\left(\frac{u'}{\sqrt{1-|u'|^2}}\right)' = W'(u), \quad \text{ in } \mathbb{R},$$

satisfying the boundary conditions

$$\lim_{x \to \pm \infty} (u(x), u'(x)) = (\pm 1, 0).$$

Moreover, u satisfies the conservation of energy law

$$1 - \frac{1}{\sqrt{1 - |u'|^2}} + W(u) = 0.$$

Isabel Coelho (ISEL) FCT, 17 December 2015

5 / 24

Idea of the proof

The proof will be done in 3 steps:

STEP 1 we use a monotone rearrangement to prove that minimising sequences of J in $\mathcal X$ can be assumed to depend only on the first variable,

STEP 2 we prove the existence of a one-dimensional minimiser with $\|\nabla u\|_{\infty} < 1$ and a law of conservation of energy,

STEP 3 we use a regularisation scheme to exclude the existence of N-dimensional minimisers.

Uniqueness (up to translations) follows from the conservation of energy.

Isabel Coelho (ISEL) FCT, 17 December 2015 6 / 24

STEP 1: Monotone rearrangement

Idea: to reorganize the level sets of u in order to obtain a one-dimensional, non-decreasing function u^\star passing through zero.

For any function $u \colon \mathbb{R} \times \omega \to [-1,1]$, we define the *level sets* of u by

$$\Omega_c = \left\{ \begin{array}{ll} \{(x,y) \in \mathbb{R} \times \omega \mid c < u(x,y) < 0\} & \text{if } -1 \leq c < 0, \\ \\ \{(x,y) \in \mathbb{R} \times \omega \mid 0 \leq u(x,y) \leq c\} & \text{if } 0 \leq c \leq 1. \end{array} \right.$$

We define a *rearrangement* $u^* : \mathbb{R} \times \omega \to [-1, 1]$ of u through its level sets

$$\Omega_c^\star = \left\{ \begin{array}{ll} \left] - \frac{m_N(\Omega_c)}{m_{N-1}(\omega)}, 0 \right[\times \omega & \text{if } -1 \leq c < 0, \\ \left[0, \frac{m_N(\Omega_c)}{m_{N-1}(\omega)} \right] \times \omega & \text{if } 0 \leq c \leq 1. \end{array} \right.$$

This generalisation of the classical monotone rearrangement for functions of a single variable was introduced and discussed in

[Carbou 1995, Farina 1999, Alberti 2000]

Isabel Coelho (ISEL) FCT, 17 December 2015 7 / 24

STEP 1: Monotone rearrangement

Figure: On the left a function $u \in \mathcal{X}$ and its rearrangement u^* on the right.

- ▶ The level sets of u^* are all cylinders and $m_N(\Omega_c^*) = m_N(\Omega_c)$.
- ▶ u^* is one-dimensional, non-decreasing, continuous and $u^*(0,y) = 0$ for all $y \in \omega$. Thus, we will use the notation $u^*(x) = u^*(x,y)$.

Isabel Coelho (ISEL) FCT, 17 December 2015 8 / 24

STEP 1: Properties of the rearrangement

Theorem (Pólya-Szegö type theorem [Alberti 2000, Theorem 2.10])

Let $g\colon [0,+\infty) \to [0,+\infty)$ be convex, g(0)=0 and strictly increasing. Then for every $u\in \mathcal{X}$ taking values in [-1,1], we have

$$\int_{\mathbb{R}\times\omega} g(|\nabla u^*|) \le \int_{\mathbb{R}\times\omega} g(|\nabla u|).$$

Moreover, if the left-hand side is finite, equality holds if and only if there exists $a \in \mathbb{R}$ such that $u(x+a) = u^*(x)$ for every $x \in \mathbb{R}$.

Lemma (Bound on the gradient)

Assume that $u \in \mathcal{X}$, takes values in [-1,1] and $|\nabla u| \in L^2(\mathbb{R} \times \omega)$. Then $u^* \in \mathcal{X}$ and

$$\|\nabla u^{\star}\|_{\infty} \leq \|\nabla u\|_{\infty}$$
.

Isabel Coelho (ISEL) FCT, 17 December 2015

9 / 24

STEP 1: Properties of the rearrangement

Theorem (Kinetic energy)

For all $u \in \mathcal{X}$ taking values in [-1,1] and such that $|\nabla u| \in L^2(\mathbb{R} \times \omega)$, we have

$$\int_{\mathbb{R}\times\omega} 1 - \sqrt{1 - |\nabla u^\star|^2} \ d\bar{x} \ \leq \ \int_{\mathbb{R}\times\omega} 1 - \sqrt{1 - |\nabla u|^2} \ d\bar{x}.$$

Moreover, if the left-hand side is finite and $\|\nabla u\|_{\infty} < 1$, we have equality if and only if there exists $a \in \mathbb{R}$ such that $u(x+a) = u^{\star}(x)$ for all $x \in \mathbb{R}$.

Isabel Coelho (ISEL) FCT, 17 December 2015 10 / 24

STEP 1: Idea of the proof

[Alberti 2000, Theorem 2.10] can be applied to the truncated functions g_n

Figure: blue = the potential $1 - \sqrt{1 - s^2}$, green = the modified $g_n(s)$.

For all
$$n \in \mathbb{N}$$
, $\int_{\mathbb{R} imes \omega} g_n(|\nabla u^\star|) \ d\bar{x} \le \int_{\mathbb{R} imes \omega} g_n(|\nabla u|) \ d\bar{x}$

 $|\nabla u| \in L^2 + \text{Lebesgue's dominated convergence} \Longrightarrow$

$$\int_{\mathbb{R}\times\omega} 1 - \sqrt{1 - |\nabla u^{\star}|^2} \ d\bar{x} \le \int_{\mathbb{R}\times\omega} 1 - \sqrt{1 - |\nabla u|^2} \ d\bar{x}.$$

Isabel Coelho (ISEL) FCT, 17 December 2015

STEP 1: Properties of the rearrangement

Theorem (Cavalieri's Principle)

For every continuous function $F\colon [-1,1]\to \mathbb{R}$ and every function $u\colon \overline{\Omega}\to [-1,1]$, we have

$$\int_{\overline{\Omega}} F(u) \, d\overline{x} = \int_{\overline{\Omega}^*} F(u^*) \, d\overline{x}.$$

Isabel Coelho (ISEL) FCT, 17 December 2015 12 / 24

STEP 1: Properties of the rearrangement

Combining the previous results, we obtain the following theorem:

Theorem (Energy of the rearrangement)

For all $u \in \mathcal{X}$ taking values in [-1,1] such that $|\nabla u| \in L^2(\mathbb{R} \times \omega)$, there exists $u^* \in \mathcal{X}$ depending only on x and non-decreasing such that

$$J(u^{\star}) = \int_{\mathbb{R} \times \omega} 1 - \sqrt{1 - |\nabla u^{\star}|^2} d\bar{x} + \int_{\mathbb{R} \times \omega} W(u^{\star}) d\bar{x} \le$$

$$\int_{\mathbb{R} \times \omega} 1 - \sqrt{1 - |\nabla u|^2} d\bar{x} + \int_{\mathbb{R} \times \omega} W(u) d\bar{x} = J(u).$$

Moreover, if the left-hand side is finite and $\|\nabla u\|_{\infty} < 1$, we have equality if and only if there exists $a \in \mathbb{R}$ such that $u(x+a) = u^{\star}(x)$ for all $x \in \mathbb{R}$.

Isabel Coelho (ISEL) FCT, 17 December 2015 13 / 24

Let $(u_k) \subset \mathcal{X}$ be a minimising sequence such that $-1 \leq u_k \leq 1$.

Passing to the rearranged functions u_k^* , if necessary, we may assume that the functions u_k are one-dimensional, non-decreasing and that $u_k(0) = 0$.

For this sequence $J(u_k) = m_{N-1}(\omega)J_1(u_k)$, where

$$J_1(u) = \int_{\mathbb{R}} 1 - \sqrt{1 - |u'(x)|^2} \, dx + \int_{\mathbb{R}} W(u(x)) \, dx.$$

Claim 1: J_1 attains its infimum in the corresponding one-dimensional space

$$\mathcal{X}_1 = \Big\{ u \in W^{1,\infty}(\mathbb{R}) \mid \big\| u' \big\|_\infty \leq 1 \ \text{ and } \lim_{x \to \pm \infty} u(x) = \pm 1 \Big\}.$$

Isabel Coelho (ISEL) FCT, 17 December 2015 14 / 24

We have: $\sup \|u_k\|_{\infty} \leq 1$, $\sup \|u_k'\|_{\infty} \leq 1$ and $\sup \|u_k'\|_{L^2}$ is bounded.

Ascoli-Arzelà's Theorem and a diagonal procedure $\implies \exists \ u \in W^{1,\infty}(\mathbb{R})$ such that

$$u_k \to u$$
 in $C_{loc}(\mathbb{R})$ and $u'_k \rightharpoonup u'$ in $L^2(\mathbb{R})$.

u is non-decreasing, bounded in [-1,1], u(0)=0 and $\|u'\|_{\infty}\leq 1$.

By weak lower semicontinuity of the kinetic part and Fatou's lemma

$$J_1(u) \le \liminf_{\mathbb{R}} \int_{\mathbb{R}} 1 - \sqrt{1 - \left| u_k' \right|^2} dt + \liminf_{\mathbb{R}} \int_{\mathbb{R}} W(u_k) dt$$
$$= \lim_{\mathcal{X}} J_1(u_k) = \inf_{\mathcal{X}} J_1.$$

In addition, $\lim_{x\to\pm\infty}u(x)=\pm1\implies u\in\mathcal{X}_1$. Therefore, $J_1(u)=\min_{\mathcal{X}_1}J_1$.

Isabel Coelho (ISEL) FCT, 17 December 2015 15 / 24

Claim 2: If u is a minimiser of J_1 in $\mathcal{X}_1 \implies ||u'||_{\infty} < 1$

Proof of the claim

For fixed $x_0 < x_1$ and $0 < \theta < 1$, we define the stretching u_θ of u as

Figure: Graphs of u (in blue) and u_{θ} (in green).

It is easily seen that $u_{\theta} \in \mathcal{X}_1$ and $J_1(u) \leq J_1(u_{\theta})$.

From $J_1(u) \leq J_1(u_{\theta})$ we obtain an uniform estimate on the derivative of u

$$|u'| \le \sqrt{1 - \frac{1}{(1 + W(u))^2}} \le \sqrt{1 - \frac{1}{(1 + \max_{[-1,1]} W)^2}} < 1.$$

So,
$$||u'||_{\infty} \le 1 - \varepsilon < 1$$
.

Now, we can use the weak formulation $\implies u \in C^2(\mathbb{R})$, is a solution of the BVP and satisfies the conservation of energy law

$$1 - \frac{1}{\sqrt{1 - |u'|^2}} + W(u) = 0.$$

Uniqueness (up to translations) follows from the law of conservation of energy.

Isabel Coelho (ISEL) FCT, 17 December 2015 17 / 24

STEP 3: Excluding N-dimensional minimisers

Claim 3: The functional J has no minimisers with $\|\nabla u\|_{\infty} = 1$.

Proof of the claim

Suppose that $u_0 \in \mathcal{X}$ is a minimiser of J with $\|\nabla u\|_{\infty} = 1$.

Recall the truncated function g_n

Figure: blue = the potential $1 - \sqrt{1 - s^2}$, green = the modified $g_n(s)$.

Isabel Coelho (ISEL) FCT, 17 December 2015 18 / 24

STEP 3: Excluding N-dimensional minimisers

The Direct Method of the Calculus of Variations can be applied to the modified functional

$$J_n(u) = \int_{\mathbb{R} \times \omega} g_n(u') \ d\bar{x} + \int_{\mathbb{R} \times \omega} W(u) \ d\bar{x}.$$

Arguing as above, we see that

 J_n has a one-dimensional minimiser $u_n \in \mathcal{X}$ with $\|u'\|_{\infty} < 1$.

For a good choice of n, the minimiser u_n is on the region where the functional was not modified. Therefore,

$$J(u_n) = J_n(u_n) \le J_n(u_0) < J(u_0),$$

which contradicts the minimality of u_0 .

Isabel Coelho (ISEL) FCT, 17 December 2015 19 / 24

Conclusion

The functional

$$J(u) = \int_{\mathbb{R} \times \omega} 1 - \sqrt{1 - |\nabla u|^2} + W(u) \ d\bar{x}$$

has a unique (up to translations) one-dimensional minimiser in \mathcal{X} , which satisfies the estimate $||u'||_{\infty} \le c < 1$ and is a classical solution of the BVP

$$\left(\frac{u'}{\sqrt{1-\left|u'\right|^2}}\right)' = W'(u), \quad \text{ in } \mathbb{R},$$

$$\lim_{x \to +\infty} \left(u(x), u'(x) \right) = (\pm 1, 0).$$

Isabel Coelho (ISEL) FCT, 17 December 2015 20 / 24

Nonautonomous problems

The same ideas can be applied to problems of the form

$$\left(\frac{u'}{\sqrt{1-|u'|^2}}\right)' = a(t)W'(u), \quad \text{in } \mathbb{R},$$
$$\lim_{x \to \pm \infty} \left(u(x), u'(x)\right) = (\pm 1, 0).$$

Theorem

- ▶ IF $0 \le a_1 \le a(t) \le a_2$ and $a(t) < a_2$ in some nonempty set,
- OR IF $a(t) \ge 0$ is T-periodic, for some T > 0,

then the energy functional

$$\mathcal{L}(u) = \int_{\mathbb{R}} 1 - \sqrt{1 - |u'|^2} + a(t) W(u) dt$$

attains its infimum in the space

$$\mathcal{X}_1 = \Big\{ u \in W^{1,\infty}(\mathbb{R}) \mid \big\| u' \big\|_{\infty} \leq 1 \quad \text{and} \quad \lim_{r \to +\infty} u(x) = \pm 1 \Big\}.$$

21 / 24

Isabel Coelho (ISEL) FCT, 17 December 2015

Nonautonomous problems

Lemma

If u is a minimiser of \mathcal{L} in \mathcal{X}_1 and there exists c>0 such that $a'(t)\leq ca(t)$ then $\|u'\|_{\infty}<1$ and u is a solution of the nonautonomous BVP.

Idea of the proof

From $\mathcal{L}(u) \leq \mathcal{L}(u_{\theta})$, we obtain

$$|u'(t)| \le \sqrt{1 - \frac{1}{1 + a(t)W(u(t)) + \int_t^{+\infty} a'(s)W(u(s)) ds}}$$
 a.e. $t \in \mathbb{R}$.

u is a minimiser of $\mathcal{L} \implies \int_{\mathbb{R}} a(t)W(u(t))\,dt \leq C$

$$\exists \ c > 0 \colon a'(t) \le ca(t) \implies$$

$$\int_{t}^{+\infty} a'(s)W(u) ds \le \int_{t}^{+\infty} c a(s)W(u) ds < +\infty$$

22 / 24

So $||u'||_{\infty} \le 1 - \varepsilon < 1$ and u is a solution of the nonautonomous BVP.

Isabel Coelho (ISEL) FCT, 17 December 2015

A problem with symmetry

Theorem (Antisymmetric problem)

If

- ightharpoonup W(s) and a(t) are even functions,
- a(t) is non-decreasing in $[0, +\infty[$ and $\liminf_{t\to\infty} a(t) > 0,$
- there exists c > 0 such that $a'(t) \le ca(t)$,

then there exists an antisymmetric heteroclinic to the nonautonomous BVP.

Idea of the proof

Minimisation in the subset of \mathcal{X}_1 of antisymmetric functions.

Open problem: Is the global minimiser of \mathcal{L} in \mathcal{X}_1 antisymmetric?

Isabel Coelho (ISEL) FCT, 17 December 2015 23 / 24

THANK YOU FOR YOUR ATTENTION!

Isabel Coelho (ISEL) FCT, 17 December 2015

24 / 24

- R. Feynman, The Feynman Lectures on Physics, 1964.
- R. Bartnik, L. Simon, Spacelike Hypersurfaces with Prescribed Boundary Values and Mean Curvature, Commun. Math. Phys., 1982.
- G. Carbou, Unicité et minimalité des solutions d'une équation de Ginzburg-Landau, 1995.
- A. Farina, Some remarks on a conjecture of de Giorgi, 1999.
- G. Alberti, Some remarks about a notion of rearrangement, 2000.

Isabel Coelho (ISEL) FCT, 17 December 2015 24 / 24