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Digital Image as a Mathematical Object

Digital image – obtained from the analogue image (physical, real image) by
sampling and quantization

The digital camera superimposes a regular grid on an analogue image and
assigns a value, e.g., the mean brightness in this field, to each grid element
(pixels)

The image content is described by
• grey values in each pixel – scalar values ranging between 0 (black) and 255
(white)
or
• colour values prescribed in each pixel –(r,g,b), where each channel r,g,b
represents the red, green, and blue component of the colour and ranges from
0 to 255.
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Size of Digital Images

Typical sizes of digital images range from

– 2000× 2000 pixels in images taken with simple digital cameras

– to 10000× 10000 pixels in images taken with high-resolution cameras used
by professional photographers.

The size of images in medical imaging applications depends on the task at
hand. PET (Positron emission tomography) produces three dimensional
image data, where a full-length body scan has a typical size of
175× 175× 500 pixels.
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Digital Image - a Mathematical Function

Mathematical representation of a digital image (sampled and quantized
version of an analog):
image function u defined on a two dimensional (in general rectangular) image
domain Ω := (a, b)× (c, d) (the grid)

u : Ω→ R

or

u : Ω→ R3

N. B. The domain Ω could be three dimensional, e.g. videos, 3D medical
imaging

The next figure visualizes the connection between the digital image and its
image function.
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Digital Image and its Image Function

Figure: Digital image versus image function: Gradually zooming in until we are at level where the image pixels are visible (blue framed detail), the
image function of the red channel u(x, y, r) of the digital photograph is plotted as the height (the value for red) over the (x, y)–plane.
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Digital Image as a Mathematical Object

Since the image function is a mathematical object we can treat it as such and
apply mathematical operations to it!

These mathematical operations–image processing techniques–include:
statistical methods
morphological operations
solving a partial differential equation for the image function

BV (Ω) – especially suited for images since an element in BV can be
discontinuous and hence the representation of image edges is possible
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Some Challenges . . .

• Deblurring

• Segmentation

• Denoising

• Inpainting

• Recolorization
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Deblurring with the TV Model
Compute u for given f = Ku, where K is a linear and bounded operator, e.g.
a convolution with a Gaussian kernel

α|Du|(Ω) +
1

2
‖Ku− f‖2L2(Ω).

Figure: Blurred and deblurred image using total variation regularisation.
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Segmentation

Image segmentation aims to segment one or more objects of interest in an
image, also under the presence of noise and blur.

Geodesic active contour segmentation computes the boundary of an object as
the zero-level set of a stationary solution of

ϕt = |∇ϕ|div

(
g(|∇f |) ∇ϕ

|∇ϕ|

)
,

g . . . edge detector function, e.g., g(s) = 1
1+s2
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Segmentation Using an Extended Version of the
Geodesic Active Contour Method
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Denoising
In most acquisition processes for digital images data wrong information is
added to the image. Even modern cameras which are able to acquire
high–resolution images produce noisy outputs

Figure: Bad lighting conditions may result into noisy image. First: A digital photo which has been acquired under too little light. Second: Plot of the
values of the red channel along the one-dimensional slice marked in red in the photograph.
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More on Denoising

For the human eye, noise is an easy problem to cope with. If the noise is not
too strong we are still able to analyze an image for its contents.

However, for the computer this is not the case. This is important when aiming
for the automated analysis of an image.

Total variation (TV) denoising – to recover u from f = u+ n (for additive noise
n) by minimizing

α|Du|(Ω) +
1

2
‖u− f‖2L2(Ω).

f ∈ L2(Ω) . . . noisy image
uα minimizer the above functional for a fixed positive

α. . . denoised image
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Denoising with the TV Model

• Linear filtering (e.g. Gaussian) – lets the image evolve along the heat
equation up to a certain time. Smoothes the image everywhere with the same
strength

By contrast,

• TV denoising is a nonlinear denoising filter that smoothes more in
homogeneous areas of the image and less at image edges

Formally a minimizer of the TV functional solves

−αdiv

(
∇u
|∇u|

)
+ u− f = 0,

More diffusion where the image gradient is small and less diffusion where it is
large
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Denoising with the TV Model

Figure: Noisy and denoised magnetic resonance image of a brain using total variation
regularisation.
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Image restoration/ denoising . . . ROF Model (Rudin, Osher and Fatemi 1992)

Ω ⊂ R2 open bounded domain, Liptschitz boundary . . . image domain
u0 : Ω→ R . . . (noisy) image
λ . . . tuning parameter

min

{
|Du|(Ω)|+ λ

∫
Ω

|u− u0|2dx : u ∈ BV (Ω), u− u0 ∈ L2(Ω)

}
removes noise while preserving edges

extended to higher order and/or vectorial setting (RGB color images)
• Gilles Aubert and Pierre Kornprobst 2006
• Tony Chan, Selim Esedoglu, Frederick Park and Andy Yip 2006

but . . .

blurring and stair-case effect

Fidelity term? Regularization term?

Here focus on the fidelity term
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• Yves Meyer 2001 . . . images with oscillations often treated as texture or
noise ; the G norm

min
{
|Du|(Ω)|+ λ||u− u0||G : u ∈ BV (Ω), u− u0 ∈ L2(Ω)

}

G(Ω;Rd) := {v ∈ L2(Ω;Rd) : vi = divξi, ξ ∈ L∞(Ω; (R2)d, ξi · ν = 0 on ∂Ω}

||v||G := inf{||ξ||L∞ : vi = divξi, . . .}

If Ω ⊂ R2 is a domain with Lipschitz boundary

G(Ω;Rd) =

{
v ∈ L2(Ω;Rd) :

∫
Ω

v(x) dx = 0

}
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Chromaticity-Brightness, CB
u0 : Ω→ [0,+∞)3 \ {0} . . . color RGB image

(u0)b := |u0| . . . intensity
(u0)c := u0

|u0| . . . ∈ S
2 . . . chromaticity

u0 = (u0)b(u0)c

And in general

u = (u)b(u)c

(u0)b ∼ grey-scale image . . . so use Meyer’s G-model

(u0)c ∼ colored image . . . so adopt a Kang-March-type model (Sung Ha
Kang and Riccardo March 2007) . . . weighted harmonic maps

min

{∫
Ω

g(|∇uσb |)|∇uc|2dx+ λ

∫
Ω

|uc − (u0)c|2dx : uc ∈W 1,2(Ω;S2)

}
u0 extended by zero outside Ω

ub
σ := Gσ ? (u0)b . . .Gσ(x) := L

σ e
− |x|

2

4σ , A > 0, σ > 0
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Kang-March

min

{∫
Ω

g(|∇uσb |)|∇uc|2dx+ λ

∫
Ω

|uc − (u0)c|2dx : uc ∈W 1,2(Ω;S2)

}

ub
σ := Gσ ? (u0)b . . .Gσ(x) := L

σ e
− |x|

2

4σ , A > 0, σ > 0

Usually

g(t) ∼ 1

1 +
(
t
a

)2 or g(t) ∼ e−( ta )
2

, a > 0

g ∼ 0 where uσb varies fast ; sharp transitions of uc

• uσb . . . a very smooth version of the brightness component . . . should let
σ → 0
• infΩ g(|∇uσb |) > 0 for σ > 0 . . . hence compactness of minimizing sequences
in W 1,2(Ω;R3)
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Consider

inf
ub∈W1,1(Ω),uc∈W1,2(Ω;S2),

ub−(u0)b∈G(Ω),u0−ucub∈G(Ω;R3)

{
F0(ubuc) + F1(ub) + F2(uc)

}
where

F0(u) :=|Du|(Ω) + λ0‖u− u0‖G(Ω;R3)

u ∈ BV (Ω;R3), u− u0 ∈ G(Ω;R3), λ0 ∈ R+

F1(ub) :=|Dub|(Ω) + λb‖ub − (u0)b‖G(Ω)

ub ∈ BV (Ω), ub − (u0)b ∈ G(Ω), λb ∈ R+

F2(uc) :=

∫
Ω

g(|∇ub|)|∇uc|2 dx+ λc

∫
Ω

|uc − (u0)c|2 dx

uc ∈W 1,2(Ω;S2), λc ∈ R+
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That is . . .

inf

{∫
Ω

|∇(ucub)| dx+

∫
Ω

|∇ub| dx+

∫
Ω

g(|∇ub|)|∇uc|2 dx

+λv‖ubuc − u0‖G(Ω;R3) + λb‖ub − (u0)b‖G(Ω) + λc

∫
Ω

|uc − (u0)c|2 dx
}

where
• ub ∈W 1,1(Ω)

• uc ∈W 1,2(Ω;S2)

• ub − (u0)b ∈ G(Ω)
• u0 − ucub ∈ G(Ω;R3)

And will assume for some 0 < α ≤ β

(u0)b, ub ∈ [α, β] a.e. inΩ
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Then

α

∫
Ω

|∇uc| dx ≤
∫

Ω

|∇(ucub)| dx+

∫
Ω

|∇ub| dx

and if

{(unb , unc )}n∈N ⊂
{

(ub, uc) ∈W 1,1(Ω; [α, β])×W 1,2(Ω;S2) : ub − (u0)b ∈ G(Ω),

ubuc − u0 ∈ G(Ω;R3)
}

is a infimizing sequence then (up to a subsequence) there exist
• ūb ∈ BV (Ω; [α, β])
• ūc ∈ BV (Ω;S2)
such that

ub
n ?
⇀ ūb in BV (Ω) , uc

n ?
⇀ ūc in BV (Ω;R3)

ūb − (u0)b ∈ G(Ω) , ūbūc − u0 ∈ G(Ω;R3)

lim
n→+∞

F fid(unb , u
n
c ) = F fid(ūb, ūc)

where the Fidelity Term (sum of the three fidelity terms) is
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F fid(ub, uc) := λv‖ubuc−u0‖G(Ω;R3)+λb‖ub−(u0)b‖G(Ω)+λc

∫
Ω

|uc−(u0)c|2 dx

So existence of minimizers . . . swlsc of the energy ; swlsc of the regularizing
terms

GOAL: Find an integral representation for

inf

{
lim inf
n→∞

∫
Ω

h(unb , u
n
c ,∇unb ,∇unc ) dx : unb ∈W 1,1(Ω; [α, β]),

unb ⇀ ub in W 1,1(Ω),

h(r, s, ξ, η) := |ξ|+ g(|ξ|)|η|2 + |s⊗ ξ + rη| unc ∈W 1,2(Ω;S2),

unc ⇀ ucin W 1,1(Ω;R3)

}
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In general,

(ξ, η) 7→ h(r, s, ξ, η) = |ξ|+ g(|ξ|)|η|2 + |s⊗ ξ + rη|

is not quasiconvex

Moreover, for (r, s) ∈ [α, β]× S2, h satisfies the
non-standard growth conditions

1

C
(|ξ|+ |η|) ≤ h(r, s, ξ, η) ≤ C(1 + |ξ|+ |η|2),

which leads us to . . . the gap problem !
concerning the unconstrained setting
• I. F., Jan Malý 1997
• I. F., Giovanni Leoni and Stefan Müller 2004
• Giuseppe Mingione and Domenico Mucci 2005
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And more!
Admissible sequences must satisfy

unb − (u0)b ∈ G(Ω), unb u
n
c − u0 ∈ G(Ω;R3)

or, equivalently,∫
Ω

(unb − (u0)b) dx = 0,

∫
Ω

(unb u
n
c − u0) dx = 0

Challenge: To construct a recovery sequence that simultaneously satisfies
the manifold constraint and the average restrictions

So . . . singularly perturb the average constraints
Study the asymptotic behavior as ε→ 0+ of

inf
(ub,uc)∈W 1,1(Ω;[α,β])×W 1,1(Ω;S2)

{
F reg(ub, uc) + F fidε (ub, uc)

}
where

F reg(ub, uc) :=

∫
Ω

|∇ub| dx+

∫
Ω

g(|∇ub|)|∇uc| dx+

∫
Ω

|∇(ucub)| dx

standard growth conditions:
∫

Ω
g(|∇ub|)|∇uc|2 dx;

∫
Ω
g(|∇ub|)|∇uc|dx
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Challenge: To construct a recovery sequence that simultaneously satisfies
the manifold constraint and the average restrictions

So . . . singularly perturb the average constraints
Study the asymptotic behavior as ε→ 0+ of

inf
(ub,uc)∈W 1,1(Ω;[α,β])×W 1,1(Ω;S2)

{
F reg(ub, uc) + F fidε (ub, uc)

}
where

F reg(ub, uc) :=

∫
Ω

|∇ub| dx+

∫
Ω

g(|∇ub|)|∇uc| dx+

∫
Ω

|∇(ucub)| dx

standard growth conditions:
∫

Ω
g(|∇ub|)|∇uc|2 dx;

∫
Ω
g(|∇ub|)|∇uc|dx
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The original fidelity term

F fid(ub, uc) := λv‖ubuc−u0‖G(Ω;R3)+λb‖ub−(u0)b‖G(Ω)+λc

∫
Ω

|uc−(u0)c|2 dx

F fidε (ub, uc) := λv

∥∥∥∥ubuc − u0 − −
∫

Ω

(ubuc − u0) dx

∥∥∥∥
G(Ω;R3)

+
1

ε

∣∣∣∣ ∫
Ω

(ubuc − u0) dx

∣∣∣∣
+λb

∥∥∥∥ub − (u0)b − −
∫

Ω

(ub − (u0)b) dx

∥∥∥∥
G(Ω)

+
1

ε

∣∣∣∣ ∫
Ω

(ub − (u0)b) dx

∣∣∣∣
+λc

∫
Ω

|uc − (u0)c|2 dx

Good news:
1 in the limit as ε→ 0+ we will recover the functional F fid

2 pairs (ub, uc) satisfying ub − (u0)b ∈ G(Ω) and ubuc − u0 ∈ G(Ω;R3).
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Notation
Recall

F reg(ub, uc) :=

∫
Ω

|∇ub| dx+

∫
Ω

g(|∇ub|)|∇uc| dx+

∫
Ω

|∇(ucub)| dx

=

∫
Ω

f(ub(x), uc(x),∇ub(x),∇uc(x)) dx

where f : R× R3 × R2 × R3×2 → [0,+∞)

f(r, s, ξ, η) := |ξ|+ g(|ξ|)|η|+ |s⊗ ξ + rη|
g : [0,+∞)→ (0, 1] . . . non-increasing, Lipschitz

g(0) = 1 and limt→+∞ g(t) = 0

Recession function

f∞(r, s, ξ, η) := lim sup
t→+∞

f(r, s, tξ, tη)

t

= lim sup
t→+∞

(
|ξ|+ g(t|ξ|)|η|+ |rη + s⊗ ξ|

)
= |ξ|+ χ{0}(|ξ|)|η|+ |rη + s⊗ ξ|
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Tangential Quasiconvex Envelope of f Ts(S
2). . . tangential space to S2 at s

QT f(r, s, ξ, η) := inf

{∫
Q

f(r, s, ξ +∇ϕ(y), η +∇ψ(y)) dy :

ϕ ∈W 1,∞
0 (Q), ψ ∈W 1,∞

0 (Q;Ts(S
2))

}
Recession Function of QT f

(QT f)∞(r, s, ξ, η) := lim sup
t→+∞

QT f(r, s, tξ, tη)

t

Jump Energy Density
a, b ∈ [α, β]× S2, ν ∈ S1, Qν . . . unit cube in R2 centered at the origin and with
two faces orthogonal to ν

K(a, b, ν) := inf

{∫
Qν

f∞(ϕ(y), ψ(y),∇ϕ(y),∇ψ(y)) dy : (ϕ,ψ) ∈ P(a, b, ν)

}
= inf

{∫
Qν

(
|∇ϕ(y)|+ |∇(ϕψ)(y)|+ χ{0}(|∇ϕ|)|∇ψ|

)
dy :

(ϕ,ψ) ∈ P(a, b, ν)

}
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Relaxation of F reg(ub, uc)
Recall

F reg(ub, uc) :=

∫
Ω

|∇ub| dx+

∫
Ω

g(|∇ub|)|∇uc| dx+

∫
Ω

|∇(ucub)| dx

extend it to F : L1(Ω)× L1(Ω;R3)→ [0,+∞]

F (ub, uc) :=

{
F reg(ub, uc) if (ub, uc) ∈W 1,1(Ω; [α, β])×W 1,1(Ω;S2),

+∞ otherwise,

for (ub, uc) ∈ L1(Ω)× L1(Ω;R3)

Looking for the lower semicontinuous envelope of F
F : L1(Ω)× L1(Ω;R3)→ [0,+∞]

F(ub, uc) := inf
{

lim inf
n→+∞

F (unb , u
n
c ) : n ∈ N, (unb , u

n
c ) ∈ L1(Ω)× L1(Ω;R3),

unb → ub in L1(Ω), unc → uc in L1(Ω;R3)
}
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Integral Representation of F reg(ub, uc)

Theorem

F(ub, uc) =

{
F reg,sc

−
(ub, uc) if (ub, uc) ∈ BV (Ω; [α, β])×BV (Ω;S2),

+∞ otherwise

for (ub, uc) ∈ L1(Ω)×L1(Ω;R3), where F reg,sc− : BV (Ω; [α, β])×BV (Ω;S2)→ R

F reg,sc
−

(ub, uc) :=

∫
Ω

QT f(ub(x), uc(x),∇ub(x),∇uc(x)) dx

+

∫
S(ub,uc)

K
(
(ub, uc)

+(x), (ub, uc)
−(x), ν(ub,uc)(x)

)
dH1(x)

+

∫
Ω

(QT f)∞(ub(x), uc(x), C1(x), C2,3(x)) |d|Dc(ub, uc)|(x)

• C1 . . . first row of C := dDc(ub,uc)
d|Dc(ub,uc)|

• C2,3 . . . 3× 2 matrix, last two rows of C
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X:={(ub, uc) ∈BV (Ω; [α, β])×BV (Ω;S2) :ub−(u0)b ∈ G(Ω),ubuc−u0 ∈ G(Ω;R3)}
btw . . . it is nonempty . . .

Theorem
{εn}n∈N → 0+, {δn}n∈N → 0+

min
(ub,uc)∈X

(
F reg,sc

−
(ub, uc) + F fid(ub, uc)

)
=lim
n→∞

inf
(ub,uc)

(
F reg(ub, uc)+F fidεn (ub, uc)

)
If (ūnb , ū

n
c ) ∈W 1,1(Ω; [α, β])×W 1,1(Ω;S2) is a δn-minimizer of F reg +F fidεn , i.e.,

F reg(ūnb , ū
n
c ) + F fidεn (ūnb , ū

n
c ) ≤

inf
(ub,uc)∈W 1,1(Ω;[α,β])×W 1,1(Ω;S2)

(
F reg(ub, uc) + F fidεn (ub, uc)

)
+ δn,

then {(ūnb , ūnc )}n∈N is sequentially, relatively compact with respect to the
weak-? convergence in BV (Ω)×BV (Ω;R3). If (ūb, ūc) is a cluster point of
{(ūnb , ūnc )}n∈N, then (ūb, ūc) ∈ X is a minimizer of (F reg,sc

−
+ F fid) in X and

F reg,sc
−

(ūb, ūc) + F fid(ūb, ūc) = lim
n→∞

(
F reg(ūnb , ū

n
c ) + F fidεn (ūnb , ū

n
c )
)
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What is new . . .

The relaxation result falls within . . . lower semicontinuity and/or integral
representations of lower semicontinuous envelopes for

u 7→
∫

Ω

f(x, u(x),∇u(x)) dx

u ∈W 1,p(Ω;M),M⊂ Rd is a (sufficiently) smooth, m-dimensional manifold

E.g., liquid crystals, micromagnetic, magnetostrictive materials,
• Bernard Dacorogna, IF, Jan Malý, Konstantina Trivisa 1999
• Roberto Alicandro, Antonio Esposito and Chiara Leone 2007
• Jean-François Babadjian and Vincent Millot 2010
• Jerry Ericksen 1990
• Domenico Mucci 2009
• Haïm Brézis, Jean-Michel Coron and Elliot Lieb 1986
• and others
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What is new . . .

Key ingredients are
• density of smooth functions in W 1,1(Ω;M)
• projection lemma (as in Alicandro, Esposito and Leone 2007, and also Virga
1994)

BUT
as opposed to Alicandro, Esposito and Leone 2007, Babadjian and Millot
2010, Mucci 2009, etc.

• given (r, s) ∈ [α, β]× S2, (ξ, η) ∈ R2 × [Ts(S
2)]2 7→ f(r, s, ξ, η) ∈ R+

is NEVER tangential quasiconvex

• our manifoldM = [α, β]× S2 has boundary

• the recession function f∞ does not satisfy a hypothesis of the type

|f(r, s, ξ, η)− f∞(r, s, ξ, η)| ≤ C(1 + |(ξ, η)|1−m)

for some C > 0 and m ∈ (0, 1), for a.e. (r, s) and for all (ξ, η)
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The Tangential Quasiconvex Envelope
Inspired by Dacorogna, F., Malý and Trivisa 1999

Lemma
r ∈ [α, β], s ∈ S2, ξ ∈ R2, η ∈ [Ts(S

2)]2

QT f(r, s, ξ, η) = Qf̃(r, s, ξ, η)

where

Qf̃(r, s, ξ, η) := inf

{∫
Q

f̃(r, s, ξ +∇ϕ(y), η +∇ψ(y)) dy :

ϕ ∈W 1,∞
0 (Q), ψ ∈W 1,∞

0 (Q;R3)

}

f̃(r, s, ξ, η) :=

{
f(r̃, s̃, ξ, Ps̃η)φ(|s|) if s ∈ R3 \ {0},
0 otherwise,
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More About f̃(r, s, ξ, η)

Psη := (I3×3 − s⊗ s)η
projection of R3×2 onto [Ts(S

2)]2 (resp., of R3 onto Ts(S2))

r̃ :=


α if r ≤ α,
r if α ≤ r ≤ β,
β if r ≥ β,

s̃ :=
s

|s|
,

φ ∈ C∞(R; [0, 1]) . . . cut-off function s. t.

φ(t) =

{
1 if t ≥ 1
0 if t ≤ 3

4

For all r ∈ [α, β], s ∈ S2, ξ ∈ R2, and η ∈ [Ts(S
2)]2

f̃(r, s, ξ, η) = f(r, s, ξ, η).

Remark. There does NOT exist (r, s) ∈ [α, β]× S2 for which

(ξ, η) ∈ R2 × R3×2 7→ f̃(r, s, ξ, η)

is quasiconvex.
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Proof: Road Map

Blow-up method . . . but with several road blocks . . .

1 Localization of the Energy: (u, v) ∈ BV (Ω; [α, β])×BV (Ω;S2)

A ∈ A(Ω) 7→ F(u, v;A) := inf
{

lim inf
n→+∞

∫
A

f(un(x), vn(x),∇un(x),∇vn(x)) dx :

n ∈ N, (un, vn) ∈W 1,1(A; [α, β])×W 1,1(A;S2),

un → u in L1(A), vn → v in L1(A;R3)
}

2 Prove that F(u, v; ·) is the restriction of a Radon measure on Ω to A(Ω)

a. c. wrt |D(u, v)|
3 Look at the Radon-Nikodym derivatives, e.g.,

(u, v) ∈ BV (Ω; [α, β])×BV (Ω;S2). For L2 a.e. x0 ∈ Ω

dF(u, v; ·)
dL2

(x0) = QT f(u(x0), v(x0),∇u(x0),∇v(x0))
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Projection function πy : B(0, 1) \ {y} → S2 (Alicandro, Esposito and Leone 2007)

πy(s) := y +
−y · (s− y) +

√
(y · (s− y))2 + |s− y|2(1− |y|2)

|s− y|2 (s− y)

projects s ∈ B(0, 1) \ {y} onto S2 along the direction s− y

πy |S2 = IS2 , ∇πy(s)w = w for s ∈ S2, w ∈ Ts(S2)

Lemma
A ∈ A(Ω), v ∈W 1,1(A;B(0, 1)) ∩ C∞(A;R3). There exists y ∈ B

(
0, 1

2

)
s. t.

πy ◦ v ∈W 1,1(A;S2) ∩ C∞(A;S2)∫
A

|∇(πy ◦ v)| dx ≤ C
∫
A

|∇v| dx.

and then approximate with same trace on the boundary:

Lemma
A ∈ A∞(Ω), w = (u, v) ∈ BV (A; [α, β]× S2).
There exists a sequence {w̄n}n∈N ⊂W 1,1(A; [α, β]× S2) ∩ C∞(A;R× R3) s. t.

1 w̄n = w on ∂A for all n ∈ N
2 limn→∞ ‖w̄n − w‖L1(A;R×R3) = 0, lim supn→∞

∫
A
|∇w̄n(x)| dx ≤ C̃|Dw|(A)
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Upper Bound for F

(u, v) ∈ BV (Ω; [α, β])×BV (Ω;S2). Then for L2 a.e. x0 ∈ Ω

dF(u, v; ·)
dL2

(x0) ≤ QT f(u(x0), v(x0),∇u(x0),∇v(x0))

Fix ε > 0. Let ϕε ∈W 1,∞
0 (Q), ψε ∈W 1,∞

0 (Q;Tv(x0)(S
2)), extended by

periodicity to the whole R2, be such that

QT f(u(x0), v(x0),∇u(x0),∇v(x0)) + ε ≥∫
Q

f(u(x0), v(x0),∇u(x0) +∇ϕε(y),∇v(x0) +∇ψε(y)) dy
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{ςk}k∈N . . . decreasing sequence of positive real numbers s. t.

B(x0, 2ςk) ⊂ Ω, |Du|(∂B(x0, ςk)) = |Dv|(∂B(x0, ςk)) = 0

{ρn}n∈N . . . standard mollifiers for δ = 1/n

un(x) := u ∗ ρn, vn := v ∗ ρn

Use Lemma:
vn,k := πyn,k ◦ vn ∈W 1,1(B(x0, ςk);S2) ∩ C∞(B(x0, ςk);R3),
yn,k ∈ B(0, 1/2) s. t.∫

Aεn,k

|∇vn,k(x)| dx ≤ C?
∫
Aεn,k

|∇vn(x), dx.

where

Aεn,k := {x ∈ B(x0, ςk) : dist(vn(x), S2) > δε/2}
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Aεn,k := {x ∈ B(x0, ςk) : dist(vn(x), S2) > δε/2}

with δε > 0 s. t.

s1, s2 ∈ B(v(x0), δε)⇒ |∇Π(s1)−∇Π(s2)| ≤ ρε
2bε
·

bε := 1 + |∇v(x0)|+ ‖∇ψε‖∞

|ξ1|, |ξ2|, |η1|, |η2|≤ aε, |ξ1 − ξ2|, |η1 − η2| ≤ ρε ⇒
|f(u(x0), v(x0), ξ1, η1)− f(u(x0), v(x0), ξ2, η2)| ≤ ε

aε := max {2 + 2|∇u(x0)|+ ‖∇ϕε‖∞, (‖∇Π‖∞ + 1)(2 + 2|∇v(x0)|+ ‖∇ψε‖∞)}
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cut-off functions

ζ1 ∈ C∞c (R; [0, 1]), ‖ζ ′1‖∞ ≤ 2/δε

ζ1(r) =

{
1 r ∈

(
− δε

4 ,
δε
4

)
,

0 r 6∈
(
− δε

2 ,
δε
2

)
ζ2 ∈ C∞c (R3; [0, 1]), ‖∇ζ2‖∞ ≤ 2/δε

ζ2(s) =

{
1 s ∈ B

(
0, δε4

)
,

0 s 6∈ B
(
0, δε2

)

uεn,k(x) := un(x) +
1

n
ζ1(un(x)− u(x0))ϕε(nx)

vεn,k(x) := vn,k(x) +
1

n
ζ2(vn,k(x)− v(x0))ψε(nx)

ūεn,k(x) := Φn(uεn,k(x)), v̄εn,k(x) :=


vn,k(x) if |vn,k(x)− v(x0)| ≥ δε

2
,

Π(vεn,k(x)) if |vn,k(x)− v(x0)| < δε
2
·
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Φn : R→ R . . . projection of
[
α− ‖ϕε‖∞/n, β + ‖ϕε‖∞/n

]
onto [α, β]

Φn(r) :=
n(β − α)r + (β + α)‖ϕε‖∞

n(β − α) + 2‖ϕε‖∞
·

|∇ūεn,k(x)| ≤ Cε(1 + |∇un(x)−∇u(x0)|)

|∇v̄εn,k(x)| ≤ Cε(1 + |∇vn,k(x)−∇v(x0)|)

{ūεn,k}n∈N and {v̄εn,k}n∈N are admissible sequences for F(u, v;B(x0; ςk))

dF(u, v; ·)
dL2

(x0) ≤ lim sup
k→∞

lim sup
n→∞

−
∫
B(x0,ςk)

f(u(x0), v(x0),∇ūεn,k(x),∇v̄εn,k(x)) dx
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. . . and after a few estimates conclude that

lim sup
k→∞

lim sup
n→∞

−
∫
B(x0,ςk)

f
(
u(x0), v(x0),∇ūεn,k(x),∇v̄εn,k(x)

)
dx

≤ lim sup
k→∞

lim sup
n→∞

−
∫
B(x0,ςk)

f
(
u(x0), v(x0),∇u(x0) +∇ϕε(nx),

∇v(x0) +∇ψε(nx)
)
dx+ ε

=

∫
Q

f
(
u(x0), v(x0),∇u(x0) +∇ϕε(y),∇v(x0) +∇ψε(y)

)
dy + ε

≤ QT f
(
u(x0), v(x0),∇u(x0),∇v(x0)

)
+ 2ε
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HAPPY BIRTHDAY LUISA!
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