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Ilaria Fragalà, Politecnico di Milano Boundary value problems for the infinity Laplacian



Prologue

Initial motivation

Study the overdetermined boundary value problems


−∆∞u = 1 in Ω

u = 0 on ∂ Ω

|∇u|= c on ∂ Ω


−∆N

∞u = 1 in Ω

u = 0 on ∂ Ω

|∇u|= c on ∂ Ω .

∆∞ = infinity Laplacian

∆N
∞ = normalized infinity Laplacian
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Symmetry results

The overdetermined boundary value problem
−∆u = 1 in Ω ,

u = 0 on ∂ Ω ,

|∇u|= c on ∂ Ω ,

admits a solution ⇐⇒ Ω is a ball.

[Serrin 1971]

Serrin’s result extends to the case of the p-Laplacian operator,
and of more general elliptic operators in divergence form

[Garofalo-Lewis 1989, Damascelli-Pacella 2000, Brock-Henrot 2002,
F.-Gazzola-Kawohl 2006]
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What happens for p = +∞?

Symmetry breaking may occur!

This intriguing discovery leads to study a number of

geometric and regularity matters
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I. Background

The infinity Laplace operator

∆∞u := 〈∇2u ·∇u,∇u〉 for all u ∈ C2(Ω)

Where the name comes from:

Formally, it is the limit as p→+∞ of the p-Laplacian.

∆pu = |∇u|p−2∆u+ (p−2)|∇u|p−4∆∞u

If divide the equation ∆pu = 0 by (p−2)|∇u|p−4, we obtain

0 =
|∇u|2

p−2
∆u+ ∆∞u .

As p→+∞, we formally get ∆∞u = 0.
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A quick overview

. Origin: [Aronsson 1967] discovered the operator and found the “singular”
solution

u(x ,y) = x4/3−y4/3 , ∆∞u = 0 in R2 \{axes} .

. Viscosity solutions: [Bhattacharya, DiBenedetto, Manfredi 1989], [Jensen
1998] proved the existence and uniqueness of a viscosity solution to{

∆∞u = 0 in Ω

u = g on ∂ Ω .

Optimization of Lipschitz extension of functions: u ∈ AML(g), i.e.

u = g on ∂ Ω and ∀A⊂⊂Ω, ∀v = u on ∂A, ‖∇u‖L∞(A) ≤ ‖∇v‖L∞(A)

. Calculus of Variations in L∞ [Juutinen 1998, Barron 1999,
Crandall-Evans-Gariepy 2001, Crandall 2005, Barron-Jensen-Wang 2001]
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. Regularity of ∞-harmonic functions

– C1,α for n = 2 [Savin 2005, Evans-Savin 2008]

– differentiability in any space dimension [Evans-Smart 2011]

Remark: C1 regularity in dimension n > 2 is a major open problem!

. Inhomogeneous problems {
−∆∞u = 1 in Ω

u = 0 on ∂ Ω

– existence and uniqueness of a viscosity solution u [Lu-Wang 2008]

– u is everywhere differentiable [Lindgren 2014]
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. Recent trend: study problems involving the normalized infinity Laplacian,

in connection with “Tug-of-War differential games”

∆N
∞u :=


〈∇2u · ∇u

|∇u|
,

∇u

|∇u|
〉 if ∇u 6= 0[

λmin(∇
2u),λmax (∇

2u)
]

if ∇u = 0

for all u ∈ C2(Ω) .

Existence and uniqueness of a viscosity solution have been proved for{
−∆N

∞u = 1 in Ω

u = 0 on ∂ Ω

[Peres-Schramm-Sheffield-Wilson 2009, Lu-Wang 2010, Armstrong-Smart
2012]
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Viscosity solutions

. A viscosity solution to −∆∞u = 1 in Ω is a function u ∈ C(Ω) which is
both a viscosity sub-solution and a viscosity super-solution, meaning that,
for all x ∈Ω and for all smooth functions ϕ:

−∆∞ϕ(x)≤ 1 if u ≺x ϕ , −∆∞ϕ(x)≥ 1 if ϕ ≺x u

. For solutions to −∆N
∞u = 1 the above inequalities must be replaced by

− ∆∞ϕ(x)

|∇ϕ(x)|2
≤ 1 if ∇ϕ(x) 6= 0

−λmax(∇2ϕ(x))≤ 1 if ∇ϕ(x) = 0


− ∆∞ϕ(x)

|∇ϕ(x)|2
≥ 1 if ∇ϕ(x) 6= 0

−λmin(∇2ϕ(x))≥ 1 if ∇ϕ(x) = 0 .

[Crandall-Ishii-Lions 1992]
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II. Overdetermined problem: a simple case (web-functions)

Simplified version of the overdetermined problem

Q. For which domains Ω is it true that the unique solution u to

(D)

{
−∆∞u = 1 in Ω

u = 0 on ∂ Ω

is of the form

u(x) = ϕ(dΩ(x)) in Ω ?

We call such a function u a web-function.

Remark: u web ⇒ |∇u|= |ϕ ′(0)|= c on ∂ Ω .
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Basic example: web solution on the ball

Look for a radial solution to problem (D) in a ball BR(0):{
−∆∞u = 1 in BR ,

u = 0 on ∂BR .

If u(x) = ϕ(R−|x |), we have to solve the 1D problem

−ϕ
′′(R−|x |) [ϕ ′(R−|x |)]2 = 1, ϕ(0) = 0, ϕ

′(R) = 0.

The solution is

f (t) = c0[R4/3− (R− t)4/3] , c0 = 34/3/4 (⇒ u ∈ C1,1/3(BR))

R

g

t

y

Similar computations in the normalized case, with profile

g(t) =
1

2
[R2− (R− t)2] (⇒ u ∈ C1,1(BR))
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Heuristics

Assume that u is a C2 solution to problem (D) in a domain Ω.

Gradient flow (characteristics)

{
γ̇(t) = ∇u((γ(t))

γ(0) = x

P-function P(x) :=
|∇u(x)|4

4
+u(x)

d

dt
P(γ(t)) = |∇u|2〈∇2u ·∇u,∇u〉+ |∇u|2 = |∇u|2(∆∞u+ 1) = 0⇒

⇒ P(γ(t)) = λ (P is constant along characteristics)

⇒ u(γ(t)) can be explicitly determined by solving an ODE
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Unfortunately from this information we cannot reconstruct u because

we do not know the geometry of characteristics! ... BUT, if u = ϕ(dΩ):

. ∇u is parallel to ∇dΩ ⇒ characteristics are line segments normal to ∂ Ω

. By solving an ODE for ϕ as in the radial case, we get:

ϕ(t) = f (t) := c0

[
R4/3− (R− t)4/3

]
(R =length of the characteristic)

. If we ask u to be differentiable, all characteristics must have the
same length equal to the inradius ρΩ and u is given by

u(x) = ΦΩ(x) := c0

[
ρ

4/3
Ω − (ρΩ−dΩ(x))4/3

]
.
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When do characteristics have the same length?

. False in general

. True ⇐⇒ Σ(Ω) = M(Ω), where

Cut locus Σ(Ω):= the closure of the singular set Σ(Ω) of dΩ

High ridge M(Ω) := the set where dΩ(x) = ρΩ

Σ= M
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Theorem (web-viscosity solutions)
The unique viscosity solution to problem

(D)

{
−∆∞u = 1 in Ω,

u = 0 on ∂ Ω

is a web-function if and only if M(Ω) = Σ(Ω). In this case,

u(x) = ΦΩ(x) := c0

[
ρ

4/3
Ω − (ρΩ−dΩ(x))4/3

]
.

. For the normalized operator ∆N
∞ , an analogous result holds true,

with ΦΩ replaced by ΨΩ(x) := 1
2 [ρ2

Ω− (ρΩ−dΩ(x))2].

. In the regular case (C1 solutions, C2 domains) the result was previously
obtained by Buttazzo-Kawohl 2011.

. Proof: we use viscosity methods + non-smooth analysis results
(in particular, a new estimate of dΩ near singular points).
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III. Geometric intermezzo

Singular sets of dΩ

Let Ω⊂ Rn be an open bounded domain.

M(Ω)⊆Σ(Ω)⊆ C(Ω)⊆Σ(Ω) .

. M(Ω):= the high ridge of Ω

is the set where dΩ attains its maximum over Ω;

. Σ(Ω):= the skeleton of Ω

is the set of points with multiple projections on ∂ Ω;

. C(Ω):= the central set of Ω
is the set of the centers of all maximal balls contained into Ω;

. Σ(Ω):= the cut locus of Ω

is the closure of Σ(Ω) in Ω.
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In general the inclusions are strict

. when Ω = R is a rectangle, one has M(R) ( Σ(R) = C(R) ( Σ(R);

. when Ω = E is an ellipse, one has M(E) ( Σ(E) ( C(E) = Σ(E);

. more pathological examples:

Σ(Ω) is always C2-rectifiable [Alberti 1994]
Σ(Ω) may have positive Lebesgue measure [Mantegazza-Mennucci 2003]
C(Ω) may fail to be H 1-rectifiable [Fremlin 1997]
and may have Hausdorff dimension 2 [Bishop-Hakobyan 2008]

Ilaria Fragalà, Politecnico di Milano Boundary value problems for the infinity Laplacian



Which is the geometry of an open set Ω when Σ(Ω) = M(Ω)?

Remark: If Σ(Ω) = M(Ω) =: S , then

S is a closed set with empty interior and positive reach

Definition [Federer 1959]:

S has positive reach if, for every x in an open tubular neighborhood outside S ,
there is a unique minimizer of the distance function from x to S

⇔ S is proximally C1, namely ∃rS > 0 : dS is C1 on {0 < dS (x) < rS}

Similar definition for proximally C2 sets.

Which is the geometry of a closed set S with empty interior and positive reach?

⇒ The set Ω will be a tubular neighborhood of S of radius ρΩ.
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Theorem (Characterization of proximally C1 sets with empty interior in R2)

Let S ⊂ R2 be closed, with empty interior, proximally C1, and connected.

Then S is either a singleton, or a 1-dimensional manifold of class C1,1.

Proof: purely geometrical, hard to extend to higher dimensions...
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Theorem (Characterization of proximally C2 sets with empty interior in R2)

Let S ⊂ R2 be closed, with empty interior, proximally C2, and connected.

Then S is either a singleton, or a 1-dimensional manifold of class C2

without boundary.
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Theorem (Characterization of planar domains with M(Ω) = Σ(Ω))

Let Ω⊂ R2 be an open bounded connected set with M(Ω) = Σ(Ω).
Then:

. Ω is either a disk or a parallel neighborhood of a 1-dim. C1,1 manifold.

. If Ω is C2 ⇒ the case of manifold with boundary cannot occur.

. If Ω is also simply connected ⇒ Ω is a disk.

Theorem (Extension to higher dimensions)

Let Ω⊂ Rn be an open bounded convex set of class C2.

If M(Ω) = Σ(Ω), then Ω is a ball.
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Back to PDE’s

In the web case:

We now know for which domains a web solution to the Dirichlet pb. exists.

In the general (non-web) case:

. The geometry of characteristics is unknown.

. Even worse, we do not know if the gradient flow is well posed!

(∇u is in L∞
loc (Ω), NOT in Liploc(Ω).)

However:

To have local forward uniqueness for the gradient flow, it is enough that

u is locally semiconcave [Cannarsa-Yu 2009], i.e. ∃C ≥ 0 s.t.

u(x +h) +u(x−h)−2u(x)≤ C |h|2 ∀[x−h,x +h]⊂Ω.

We need a regularity result!
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IV. Regularity results

Theorem (power-concavity of solutions)
Assume that Ω is convex, and let u be the unique viscosity solution to problem

(D)

{
−∆∞u = 1 in Ω,

u = 0 on ∂ Ω.

Then u3/4 is concave in Ω.

. Counterpart of a well-known result for the p-Laplacian [Sakaguchi 1987]

. For the normalized operator ∆N
∞ , an analogous result holds true,

with concavity exponent equal to 1/2.
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Proof:

We adapt the convex envelope method [Alvarez-Lasry-Lions 1997].

The function w :=−u3/4 solves−∆∞w − 1
w

[
1
3 |∇w |4 +

(
3
4

)3]
= 0 in Ω

w = 0 on ∂ Ω .

We show that w∗∗ is a supersolution to the same problem.

By applying a comparison principle, we get w∗∗ ≥ w .

Hence w = w∗∗, i.e. w is convex.
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Corollary (local semiconcavity and C1-regularity of solutions)
Assume that Ω is convex, and let u be the unique viscosity solution to problem

(D)

{
−∆∞u = 1 in Ω,

u = 0 on ∂ Ω.

Then u is locally semiconcave and continuously differentiable in Ω.

. Same result for the normalized operator ∆N
∞ .

. The optimal expected regularity is of type C1,α .

In the normalized case, we can prove that u is C1,1 ⇔ M(Ω) = Σ(Ω).
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V. Overdetermined problem: the general case

Assuming Ω convex, characteristics are now back at our disposal!

Heuristics - continued

P(x) :=
|∇u|4

4
+u , with u solution to (D)

. Along characteristics: d
dt

(
P(γ(t)

)
= 0 ⇒ P(γ(t)) is constant

. Assuming u = 0 and |∇u|= c on ∂ Ω ⇒ P is constant on Ω.

. If P is constant on Ω ⇒ u solves a first order HJ equation

⇒ by uniqueness [Barles 1990]

u(x) = ΦΩ(x) := c0

[
ρ

4/3
Ω − (ρΩ−dΩ(x))4/3

]
⇒ by the results in the web-case M(Ω) = Σ(Ω).
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Lemma 1 (P-function inequalities)
Assume Ω is convex. Then

min
∂Ω

|∇u|4

4
≤ P(x)≤max

Ω
u ∀x ∈Ω .

Proof:

The supremal convolutions

uε (x) = sup
y

{
u(y)− |x−y |2

2ε

}
are of class C1,1 and are sub-solutions of the PDE

⇒ Pε := |∇uε |4
4 +uε is increasing along the gradient flow of uε

⇒ in the limit as ε → 0 we obtain the required inequalities.
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Lemma 2 (matching of upper and lower bounds)
Assume Ω convex. If u satisfies the overdetermined condition |∇u|= c on ∂ Ω,
then

c4

4
= min

∂Ω

|∇u|4

4
= max

Ω
u .

Proof: Key remark: the web-function ΦΩ is a super-solution to −∆∞u = 1

=⇒ ΦB ≤ u ≤ΦΩ on B = inner ball of radius ρΩ

=⇒ ΦB = u = ΦΩ on γ = [x ,y ], with x ∈M(Ω), y ∈ ∂ Ω

A

B

=⇒ u = c0

[
ρ

4/3
Ω − (ρΩ−dΩ(x))4/3

]
on γ

=⇒ max
Ω

u = u(x) = c0ρ
4/3
Ω =

|∇u(y)|4

4
= min

∂Ω

|∇u|4

4
.
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Theorem (Serrin-type theorem for ∆∞ and ∆N
∞ )

Assume that Ω is convex. Then each of the overdetermined problems
−∆∞u = 1 in Ω

u = 0 on ∂ Ω

|∇u|= c on ∂ Ω


−∆N

∞u = 1 in Ω

u = 0 on ∂ Ω

|∇u|= c on ∂ Ω

admits a solution ⇐⇒ M(Ω) = Σ(Ω).

By the previous geometric results + convexity assumption:

. If n = 2 ⇐⇒ Ω is a stadium.

. If n = 2 and Ω is C2 ⇐⇒ Ω is a ball.

Link between symmetry breaking and boundary regularity!
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Open problems

. Prove Serrin-type theorem for ∆∞ or ∆N
∞ without the convexity restriction.

. Characterize domains with M(Ω) = Σ(Ω) in higher dimensions.

. Study the regularity preserving properties of the parabolic flow

governed by ∆∞ or ∆N
∞ .

Ilaria Fragalà, Politecnico di Milano Boundary value problems for the infinity Laplacian



References:

. Crasta-F.: A symmetry problem for the infinity Laplacian, Int. Mat. Res.
Not. IMRN (2014)

. Crasta-F.: On the characterization of some classes of proximally smooth
sets, ESAIM: Control Optim. Calc. Var. (2015)

. Crasta-F.: On the Dirichlet and Serrin problems for the inhomogeneous
infinity Laplacian in convex domains: Regularity and geometric results,
Arch. Rat. Mech. Anal. (2015)

. Crasta-F.: A C1 regularity result for the inhomogeneous normalized
infinity Laplacian, to appear on Proc. Amer. Math. Soc.

. Crasta-F.: Characterization of stadium-like domains via boundary value
problems for the infinity Laplacian, to appear on Nonlinear Analysis Series
A: Theory, Methods & Applications.
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Many thanks for your attention

and

*********************************

Happy Birthday Lúısa!

*********************************
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