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Structured Deformations

Introduced by Del Piero-Owen (1993) to provide a multiscale
geometry that captures the contributions at the macrolevel of
both smooth geometrical changes and non-smooth
geometrical changes (disarrangements) at submacroscopic
levels.

Revised in Choksi-Fonseca (1997) in the spirit of an
energetic formulation – good for variational methods.

DPO a SD is a triple (κ, g,G). Approximation Theorem: there exists
fn injective and piecewise smooth such that fn → g, ∇fn → G,
κ = ∪∞n=1 ∩∞p=n κp. fn  (g,G).
M(x) := ∇g(x)−G(x) — disarrangements tensor.

CF a SD is a pair (g,G) with Dg = ∇gLn + [g]⊗ νHN−1. Approx.

Theorem: there exists fn ∈ SBV such that fn
L1
→ g, ∇fn

M
⇀ G.
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Energies arising from structured deformations

In the deformation of a body, we want to measure separations
and switches, namely, the most economical manner in which
they can arise in the approximating sequences fn.

We call

V |·|(g,G;P) := inf

{
lim inf

n→∞

∫
J(fn)∩P

|[fn] · ν|dHN−1 : fn  (g,G)

}

the minimal volume swept out by disarrangements in P for (g,G).
Substituting | · | with (·)± implies

V±(g,G;P) =
1
2
V |·|(g,G;P)± 1

2

∫
P

trM(x) dLN(x),

hence the question: does V |·| have an associated
disarrangement density? If so, how does it depend on (g,G)?
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Relaxation à la Choksi-Fonseca - I

Given an energy density of the form

E(u) :=

∫
Ω

W(∇u) dLN +

∫
J(u)∩Ω

ψ([u], ν) dHN−1,

one wants to obtain, for the relaxed energy

I(g,G) := inf
{

lim inf
n→∞

E(fn) : fn  (g,G)
}
,

a representation formula

I(g,G) =

∫
Ω

H(∇g,G) dLN +

∫
J(g)∩Ω

h([g], ν) dHN−1.

The bulk density H and the surface density h are derived via a
cell formula.
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Relaxation à la Choksi-Fonseca - II
Theorem (Owen-Paroni, 2015)

Given ψ : RN × SN−1 → [0,+∞) such that

there exists C > 0: 0 6 ψ(ξ, ν) 6 C|ξ|,
for all t > 0, ψ(tξ, ν) = tψ(ξ, ν),

for all ξ1, ξ2, ν, ψ(ξ1 + ξ2, ν) 6 ψ(ξ1, ν) + ψ(ξ2, ν),

if we define, for any p > 1,

I(g,G) := inf

{
lim inf

n→∞

∫
J(un)∩Ω

ψ([un], ν) dHN−1 : un ∈ SBV(Ω;RN)

un
L1
→ g, ∇un

∗
⇀ G, sup

n
(|∇un|p + |Dun|(Ω)) < +∞

}
,

we have

I(g,G) =

∫
Ω

H(∇g,G) dLN +

∫
J(g)∩Ω

h([g], ν) dHN−1.
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Relaxation à la Choksi-Fonseca - III
Theorem (Owen-Paroni, 2015)
The densities H and h are given by

H(A,B) := inf

{∫
J(u)∩Q

ψ([u], ν) dHN−1 : u ∈ SBV(Q;RN),

u|∂Q(x) = Ax, |∇u| ∈ Lp(Q),

∫
Q
∇u = B

}
,

h(ξ, η) := inf

{∫
J(u)∩Qη

ψ([u], ν) dHN−1 : u ∈ SBV(Qη;RN),

u|∂Qη
(x) = uξ,η, ∇u = 0 a.e.

}
,

where

uξ,η(x) :=

{
0 if −1/2 < x · η < 0,

ξ if 0 6 x · η < 1/2.
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Explicit formulas

Theorem (Owen-Paroni (2015))

The choices ψ|·|(ξ, ν) := |ξ · ν| and ψ±(ξ, ν) := (ξ · ν)± yield

H|·|(A,B) = |tr(A− B)|, h|·|(ξ, ν) = |ξ · ν| = ψ|·|(ξ, ν),

H±(A,B) = (tr(A− B))±, h±(ξ, ν) = (ξ · ν)± = ψ±(ξ, ν).

Therefore, the functional for the minimal volume swept out by
disarrangements reads

V |·|(g,G;P) =

∫
P
|tr(∇g−G)|dLN +

∫
J(g)∩P

|[g] · ν|dHN−1.

A crucial step in OP’s proof was to show that

H|·|(A,B) 6 |tr(A− B)|.
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Our contribution

Given A,B∈ RN×N, there holds

|tr(A− B)| 6inf

{∫
J(u)
|[u] · ν|dHN−1 : u ∈ SBV(Q;RN)

u(x) = Ax on ∂Q, ∇u ∈ Lp(Q),

∫
Q
∇u = B

}
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Sketch of the proof - I
Matias’ Lemma (2007): Given Ω ⊂ RN bounded open and
M ∈ RN×N, there exists C(N) > 0 and u ∈ SBV(Ω;RN):

(1) u|∂Q = 0, (2) ∇u = M a.e., (3) |Dsu|(Ω) 6 C(N)||M||LN(Ω).

Let n > 1 and define the frame Fn := Q \ (1− 2
n+2)Q.

Apply the Lemma to obtain u(n) : Fn → RN: (1) u(n)
|∂Fn

= 0, (2)

∇u(n) = M a.e., (3)
∫

J(u(n)) |[u
(n)]| 6 C(N)||M||

(
1− (1− 2

n+2)N
)

.

Let M̂ := 1
2(M + M>) and choose a o.n. basis {ei}: M̂ei = λiei.

Cover (1− 1
n+2)Q by Kn,m cubes Ck

n,m centred at ck
n,m and of

size 1/m with the i-th faces orthogonal to Rei, R ∈ O(N) TBD.

Define un,m : (1− 2
n+2)Q→ RN by un,m(x) := M(x− ck

n,m) if
x ∈ (1− 2

n+2)Q ∩ Ck
n,m for some k, un,m(x) := 0 otherwise.

Finally, let u(n)
m (x) := u(n)(x) if x ∈ Fn, u(n)

m (x) := un,m(x) if
x ∈ (1− 2

n+2)Q.
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Sketch of the proof - II

The estimate on the total variation on the jump set of the
functions u(n)

m leads to checking if (M̂Rei ·Rei) · (M̂Rej ·Rej) > 0 for
i, j = 1, . . . ,N.

The notion of isotropic vectors, i.e., unit vectors v for which
M̂v · v = 0, gives the desired result.

Theorem
A symmetric matrix S ∈ RN×N possesses an orthonormal set of N
isotropic vectors iff trS = 0.

Apply now the preceding results to M := A− B and S := dev M̂.
Recall that in the explicit formula we had A− B = ∇g−G.

Thank you for your attention!
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