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Statement of the problem
Ω ⊂ Rn be a bounded domain where d populations co-exist.


∆uε

i (x) =
1
ε2 uε

i (x)∑
j 6=i

ˆ
B1(x)

uε
j (y) dy, i = 1, . . . , d, in Ω,

uε
i = φi, i = 1, . . . , d, on (∂Ω)1.

(1)

where:

I B1(x) can be replaced by any uniformly convex set and the non-local
operator ˆ

B1(x)
uε

j (y) dy
can be replaced by

sup
y∈B1(x)

uε
j (y) .

I (∂Ω)1 = {x ∈ Ωc : dist(x, ∂Ω) ≤ 1}
I φi ≥ 0 Holder continuous fcts, s.t. dist(supp φi, supp φj) ≥ 1, for i 6= j
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Statement of the problem

Ω ⊂ Rn be a bounded domain where d populations co-exist.


∆uε

i (x) =
1
ε2 uε

i (x)∑
j 6=i

ˆ
B1(x)

uε
j (y) dy, i = 1, . . . , d, in Ω,

uε
i = φi, i = 1, . . . , d, on (∂Ω)1.

(2)
think about:

I d number of populations that exist in a bounded domain Ω
I uε

i is the density of the population i, bounded, 0 ≤ uε
i (x) ≤ N, for all i.

I 1
ε2 prescribes the competitive character of the relationship between
species
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Why is it called a segregation model ?
The simplest model with diffusion (type Gause-Lotka-Volterra):

∂u1

∂t
= d1∆u1 + R1u1 − a1u1

2 − b12u1u2 in Ω,

∂u2

∂t
= d2∆u2︸ ︷︷ ︸

diffusion term

+ R2u2 − a2u2
2 − b21u1u2 in Ω,

I di is the diffusion rate for species i;
I ui(x, t) is the density of the population i at time t and

position x;
I Ri is the intrinsic rate of growth of species i;
I ai is a positive number that characterizes the intraspecies

competition for the species i;
I bij is a positive number that characterizes the interspecies

competition between the species i and j.
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Study of existence, uniqueness and regularity for solutions
I P. Korman, A. Lenng ’87, A.C. Lazer, P.J. Mckenne ’82, C. Gui, Y.Lon ’94
I N. Shigesada, K. Kawasaki, E. Terramoto, ’84
I M. Minura, S. Ei, Q. Fang ’91
I E.N.Dancer ’95
I E.N.Dancer, Y. Du ’95 ’95 ’95;

Dancer, Du ’95 ’95 ’95
−∆ui = Riui − aiui

2 −∑
i 6=j

bijuiuj in Ω, i = 1, 2

ui > 0 in Ω, ui = 0 on ∂Ω, i = 1, 2
(3)

Dancer, Hilhorst, Mimura, Peletier ’99
associate the spacial segregation obtained when bij → ∞ with a
free boundary problem (two phase FB problem)
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Segregation of species with high competition
Pattern formation driven by strong competition (ε→ 0)

I E.N.Dancer, D. Hilhorst, M. Minura, L. A. Peletier ’99
I M. Conti, S. Terracini, G. Verzini ’02 ’03 (optimal partition)’05 ’06 ’08
I M. Conti, V. Felli ’06 ’08
I E.N.Dancer, Y. Du ’03 ’06 ’08
I L. Caffarelli, F. Lin ’08 (variational formulation, optimal partition)

I L. Caffarelli, A.L. Karakhanyan, F. Lin ’09 (non variational formulation,
viscosity theory)

Fully nonlinear diffusion (Adjacent segregation)
I Fully nonlinear diffusion, V.Q, ’13
I Characterization of the free boundary for fully nonlinear diffusion,

L. Caffarelli, M. Torres, V.Q, in preparation

Non local segregation models (segregation at distance)
I Nonlocal diffusion, S. Terracini, G. Verzini, A. Zilio, ’12 ’13

I Linear diffusion and nonlocal interaction, L. Caffarelli, S. Patrizi, V. Q,’14
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Statement of the problem

Ω ⊂ Rn be a bounded domain where d populations co-exist.

{
∆uε

i (x) =
1
ε2 uε

i (x)∑j 6=i
´

B1(x)
uε

j (y) dy, i = 1, . . . , d, in Ω,
uε

i = φi, i = 1, . . . , d, on (∂Ω)1.
(4)

Goal:

I Existence and global regularity independent of ε

I Study the limit in ε and characterize the limit problem

Heuristically, the non local term will force the populations to stay at
distance 1, one from each other as ε tends to 0.

I Study the regularity of the solution and of the free boundary?
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Our results on the long range segregation model
Asymptotic behavior


∆uε

i (x) =
1
ε2 uε

i (x)∑j 6=i
´

B1(x)
uε

j (y) dy Ω

uε
i = φi (∂Ω)1

→


∆ui = 0, when ui > 0

(supp ui)1 ∩ {uj > 0} = ∅, i 6= j

ui Lipschitz in Ω

I Existence
I Solutions (uε

i − ε
1
δ )+ are locally uniformly Lipschitz ind. of ε

I Characterization of limit problem

I Semiconvexity of the free boundary
I The set ∂{ui > 0} has finite (n− 1)-dimensional Hausdorff

measure.
I Sharp characterization of the interfaces
I Classification of the singular sets (n=2)
I Free boundary condition (for B1 )
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Semiconvexity of the free boundary
Theorem
If x0 ∈ ∂{ui > 0} there is an exterior tangent ball B1(y) at x0.
In particular, for x ∈ B1(y) ∩ B1(x0) all uj ≡ 0, (including ui).

9 / 17



Semiconvexity of the free boundary
Theorem
If x0 ∈ ∂{ui > 0} there is an exterior tangent ball B1(y) at x0.
In particular, for x ∈ B1(y) ∩ B1(x0) all uj ≡ 0, (including ui).

9 / 17



It is enough to prove that S∗σ ⊂ S and for that it is
enough to prove that for all x ∈ S∗σ, ∆uε

i (x)→ 0....

Why?
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It is enough to prove that for all x ∈ S∗σ, ∆uε
i (x)→ 0....

Because:

I Since Sσ ⊂ S∗σ
I We have ui 6= 0 in S∗σ
I If ui ≥ 0 and ui is harmonic in S∗σ, ∆ui = 0, by strong

maximum principle ui can’t have an interior minimum
I So ui > 0 in S∗σ
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To prove ∆uε
i (x)→ 0, x ∈ S∗σ, it is enough to prove that:

Claim: If uε
i (x) = m then there exists an universal constant τ

such that if y ∈ B1+ ρ
2
(x), (purple area) then

uε
j (y) ≤ ce−

c mαrβ

ε , j 6= i

where ρ = τmr
sup∂Ω φi

, and r such that Br(x) is far from the boundary.

B1(x)
B1+ ⇢

2
(x)

B⇢(x)

x

B ⇢
4
(y)y

B ⇢
4
(y)

B ⇢
4
(y)

B ⇢
4
(y)

z

B1(z)

Bs(x̄)
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Important facts:
Fact 1:

∆u(x) ≥ θ2u(x), x ∈ Bρ(0)
u(x) ≥ 0,

⇒ u(0)
supBρ(0) u(x)

≤ C e−cθρ

Fact 2:

∆u(x) ≥ 0, x ∈ Br(0)
u(x) ≤ 1, x ∈ Br(0)
u(0) = m > 0
B ball

⇒ ∃τ > 0 universal
const. such that
if dist(B, 0) ≤ τmr
then

sup
∂B∩Br(0)

u(x) ≥ m
2
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Classification of the singular sets (n=2)
Theorem
Let Si = {ui > 0} and consider two points that realize the
distance 1 across the boundary, x0 ∈ ∂Si and y0 ∈ ∂Sj. Assume
that they are such that Si had an angle θi at x0 and Sj has an
angle θj at y0. Then

θi = θj.

y1

x0

y2

x1

S1
1

S2
1

S2
2S1

2
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Open Problems:

I Regularity for higher dimensions;
I Different weights and shapes of the domain of

inter-competition (for instance star-shaped sets);
I Evolution problem associated.
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Happy birthday dear Luisa!!
Thank you!
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