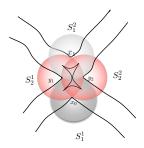
On a long range segregation model

Veronica Quitalo Purdue University (joint work with Luis Caffarelli and Stefania Patrizi)



Luisa's Conference, 2015

 $\Omega \subset \mathbb{R}^n$ be a bounded domain where *d* populations co-exist.

$$\begin{cases} \Delta u_i^{\epsilon}(x) = \frac{1}{\epsilon^2} u_i^{\epsilon}(x) \sum_{j \neq i} \int_{B_1(x)} u_j^{\epsilon}(y) \, \mathrm{d}y, & i = 1, \dots, d, \quad \text{in } \Omega, \\ u_i^{\epsilon} = \phi_i, \quad i = 1, \dots, d, \quad \text{on} \quad (\partial \Omega)_1. \end{cases}$$
(1)

 $\Omega \subset \mathbb{R}^n$ be a bounded domain where *d* populations co-exist.

$$\begin{cases} \Delta u_i^{\epsilon}(x) = \frac{1}{\epsilon^2} u_i^{\epsilon}(x) \sum_{j \neq i} \int_{B_1(x)} u_j^{\epsilon}(y) \, \mathrm{d}y, & i = 1, \dots, d, \quad \text{in } \Omega, \\ u_i^{\epsilon} = \phi_i, \quad i = 1, \dots, d, \quad \text{on} \quad (\partial \Omega)_1. \end{cases}$$
(1)

where:

B₁(x) can be replaced by any uniformly convex set and the non-local operator

can be replaced by

$$\int_{B_1(x)} u_j^{\epsilon}(y) \, \mathrm{d}y$$
$$\sup_{y \in B_1(x)} u_j^{\epsilon}(y) \; .$$

 $\Omega \subset \mathbb{R}^n$ be a bounded domain where *d* populations co-exist.

$$\begin{cases} \Delta u_i^{\epsilon}(x) = \frac{1}{\epsilon^2} u_i^{\epsilon}(x) \sum_{j \neq i} \int_{B_1(x)} u_j^{\epsilon}(y) \, \mathrm{d}y, & i = 1, \dots, d, \quad \text{in } \Omega, \\ u_i^{\epsilon} = \phi_i, \quad i = 1, \dots, d, \quad \text{on} \quad (\partial \Omega)_1. \end{cases}$$
(1)

where:

B₁(x) can be replaced by any uniformly convex set and the non-local operator

$$\int_{B_1(x)} u_j^{\epsilon}(y) \, \mathrm{d}y$$
$$\sup_{y \in B_1(x)} u_j^{\epsilon}(y) \, .$$

• $(\partial \Omega)_1 = \{x \in \Omega^c : \operatorname{dist}(x, \partial \Omega) \le 1\}$

• $\phi_i \ge 0$ Holder continuous fcts, s.t. dist(supp ϕ_i , supp ϕ_j) ≥ 1 , for $i \ne j$

 $\Omega \subset \mathbb{R}^n$ be a bounded domain where *d* populations co-exist.

$$\begin{cases} \Delta u_i^{\epsilon}(x) = \frac{1}{\epsilon^2} u_i^{\epsilon}(x) \sum_{j \neq i} \int_{B_1(x)} u_j^{\epsilon}(y) \, \mathrm{d}y, & i = 1, \dots, d, \quad \text{in } \Omega, \\ u_i^{\epsilon} = \phi_i, \quad i = 1, \dots, d, \quad \text{on} \quad (\partial \Omega)_1. \end{cases}$$
(2)

think about:

- *d* number of populations that exist in a bounded domain Ω
- ▶ u_i^{ϵ} is the density of the population *i*, bounded, $0 \le u_i^{\epsilon}(x) \le N$, for all *i*.
- $\frac{1}{\epsilon^2}$ prescribes the competitive character of the relationship between species

Why is it called a segregation model ?

-

The simplest model with diffusion (type Gause-Lotka-Volterra):

$$\frac{\partial u_1}{\partial t} = d_1 \Delta u_1 + R_1 u_1 - a_1 u_1^2 - b_{12} u_1 u_2 \text{ in } \Omega,$$

$$\frac{\partial u_2}{\partial t} = \underbrace{d_2 \Delta u_2}_{\text{diffusion term}} + R_2 u_2 - a_2 u_2^2 - b_{21} u_1 u_2 \text{ in } \Omega,$$

- d_i is the diffusion rate for species *i*;
- *u_i(x, t)* is the density of the population *i* at time *t* and position *x*;
- *R_i* is the intrinsic rate of growth of species *i*;
- *a_i* is a positive number that characterizes the intraspecies competition for the species *i*;
- ▶ *b_{ij}* is a positive number that characterizes the interspecies competition between the species *i* and *j*.

Study of existence, uniqueness and regularity for solutions

- P. Korman, A. Lenng '87, A.C. Lazer, P.J. Mckenne '82, C. Gui, Y.Lon '94
- N. Shigesada, K. Kawasaki, E. Terramoto, '84
- M. Minura, S. Ei, Q. Fang '91
- E.N.Dancer '95
- E.N.Dancer, Y. Du '95 '95 '95;

Dancer, Du '95 '95 '95

$$\begin{cases} -\Delta u_{i} = R_{i}u_{i} - a_{i}u_{i}^{2} - \sum_{i \neq j} b_{ij}u_{i}u_{j} & \text{in } \Omega, \quad i = 1,2 \\ u_{i} > 0 & \text{in } \Omega, \quad u_{i} = 0 & \text{on } \partial \Omega, \quad i = 1,2 \end{cases}$$
(3)

Dancer, Hilhorst, Mimura, Peletier '99

associate the spacial segregation obtained when $b_{ij} \rightarrow \infty$ with a free boundary problem (two phase FB problem)

Segregation of species with high competition

Pattern formation driven by strong competition ($\epsilon
ightarrow 0$)

- E.N.Dancer, D. Hilhorst, M. Minura, L. A. Peletier '99
- M. Conti, S. Terracini, G. Verzini '02 '03 (optimal partition)'05 '06 '08
- M. Conti, V. Felli '06 '08
- E.N.Dancer, Y. Du '03 '06 '08
- L. Caffarelli, F. Lin '08 (variational formulation, optimal partition)
- L. Caffarelli, A.L. Karakhanyan, F. Lin '09 (non variational formulation, viscosity theory)

Fully nonlinear diffusion (Adjacent segregation)

- Fully nonlinear diffusion, V.Q, '13
- Characterization of the free boundary for fully nonlinear diffusion,
 - L. Caffarelli, M. Torres, V.Q, in preparation

Non local segregation models (segregation at distance)

- Nonlocal diffusion, S. Terracini, G. Verzini, A. Zilio, '12 '13
- Linear diffusion and nonlocal interaction, L. Caffarelli, S. Patrizi, V. Q,'14

 $\Omega \subset \mathbb{R}^n$ be a bounded domain where *d* populations co-exist.

$$\begin{cases} \Delta u_i^{\epsilon}(x) = \frac{1}{\epsilon^2} u_i^{\epsilon}(x) \sum_{j \neq i} \int_{B_1(x)} u_j^{\epsilon}(y) \, \mathrm{d}y, & i = 1, \dots, d, \quad \text{in } \Omega, \\ u_i^{\epsilon} = \phi_i, \quad i = 1, \dots, d, \quad \text{on} \quad (\partial \Omega)_1. \end{cases}$$
(4)

Goal:

- Existence and global regularity independent of e
- Study the limit in ϵ and characterize the limit problem

 $\Omega \subset \mathbb{R}^n$ be a bounded domain where *d* populations co-exist.

$$\begin{cases} \Delta u_i^{\epsilon}(x) = \frac{1}{\epsilon^2} u_i^{\epsilon}(x) \sum_{j \neq i} \int_{B_1(x)} u_j^{\epsilon}(y) \, \mathrm{d}y, & i = 1, \dots, d, \quad \text{in } \Omega, \\ u_i^{\epsilon} = \phi_i, \quad i = 1, \dots, d, \quad \text{on} \quad (\partial \Omega)_1. \end{cases}$$
(4)

Goal:

- Existence and global regularity independent of e
- Study the limit in *e* and characterize the limit problem Heuristically, the non local term will force the populations to stay at distance 1, one from each other as *e* tends to 0.
- Study the regularity of the solution and of the free boundary?

Our results on the long range segregation model Asymptotic behavior

$$\left\{ \begin{array}{ll} \Delta u_i^{\epsilon}(x) = \frac{1}{\epsilon^2} u_i^{\epsilon}(x) \sum_{j \neq i} \int_{B_1(x)} u_j^{\epsilon}(y) \, \mathrm{d}y & \Omega \\ u_i^{\epsilon} = \phi_i & (\partial\Omega)_1 \end{array} \right\} \left\{ \begin{array}{ll} \Delta u_i = 0, \quad \text{when } u_i > 0 \\ (\operatorname{supp} u_i)_1 \cap \{u_j > 0\} = \emptyset, \ i \neq j \\ u_i \text{ Lipschitz in } \Omega \end{array} \right.$$

- Existence
- Solutions $(u_i^{\epsilon} \epsilon^{\frac{1}{\delta}})^+$ are locally uniformly Lipschitz ind. of ϵ
- Characterization of limit problem

Our results on the long range segregation model Asymptotic behavior

$$\left\{ \begin{array}{ll} \Delta u_i^{\epsilon}(x) = \frac{1}{\epsilon^2} u_i^{\epsilon}(x) \sum_{j \neq i} \int_{B_1(x)} u_j^{\epsilon}(y) \, \mathrm{d}y & \Omega \\ u_i^{\epsilon} = \phi_i & (\partial\Omega)_1 \end{array} \right\} \xrightarrow{} \left\{ \begin{array}{ll} \Delta u_i = 0, & \text{when } u_i > 0 \\ (\operatorname{supp} u_i)_1 \cap \{u_j > 0\} = \emptyset, \ i \neq j \\ u_i \text{ Lipschitz in } \Omega \end{array} \right.$$

- Existence
- ► Solutions $(u_i^{\epsilon} \epsilon^{\frac{1}{\delta}})^+$ are locally uniformly Lipschitz ind. of ϵ
- Characterization of limit problem
- Semiconvexity of the free boundary
- ► The set ∂{u_i > 0} has finite (n − 1)-dimensional Hausdorff measure.
- Sharp characterization of the interfaces
- Classification of the singular sets (n=2)
- Free boundary condition (for B_1)

Semiconvexity of the free boundary

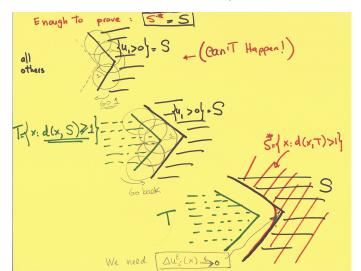
Theorem

If $x_0 \in \partial \{u_i > 0\}$ there is an exterior tangent ball $B_1(y)$ at x_0 . In particular, for $x \in B_1(y) \cap B_1(x_0)$ all $u_j \equiv 0$, (including u_i).

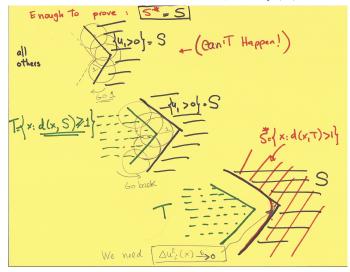
Semiconvexity of the free boundary

Theorem

If $x_0 \in \partial \{u_i > 0\}$ there is an exterior tangent ball $B_1(y)$ at x_0 . In particular, for $x \in B_1(y) \cap B_1(x_0)$ all $u_j \equiv 0$, (including u_i).



It is enough to prove that $S^*_{\sigma} \subset S$ and for that it is enough to prove that for all $x \in S^*_{\sigma}$, $\Delta u^{\epsilon}_i(x) \to 0$



Why?

It is enough to prove that for all $x \in S^*_{\sigma}$, $\Delta u^{\epsilon}_i(x) \to 0$

Because:

- Since $S_{\sigma} \subset S_{\sigma}^*$
- We have $u_i \neq 0$ in S^*_{σ}
- If u_i ≥ 0 and u_i is harmonic in S^{*}_σ, Δu_i = 0, by strong maximum principle u_i can't have an interior minimum
- So $u_i > 0$ in S^*_{σ}

To prove $\Delta u_i^{\epsilon}(x) \to 0$, $x \in S_{\sigma}^*$, it is enough to prove that:

Claim: If $u_i^{\epsilon}(x) = m$ then there exists an universal constant τ such that if $y \in B_{1+\frac{\rho}{2}}(x)$, (purple area) then

$$u_j^{\epsilon}(y) \leq c e^{-\frac{c m^{\alpha} r^{\beta}}{\epsilon}}, \quad j \neq i$$

where $\rho = \frac{\tau mr}{\sup_{z \in \Phi_i}}$, and r such that $B_r(x)$ is far from the boundary. $B_1(z)$ $B_{\ell}(y)$ $B_{\frac{\rho}{4}}(y)$ Beli $\mathbf{Q}B_s(\bar{x})$ $B_{\frac{\rho}{4}}(y)$ $B_{\rho}(x)$ $B_1(x)$ $B_{1+\frac{\rho}{2}}(x)$

To prove $\Delta u_i^{\epsilon}(x) \to 0$, $x \in S_{\sigma}^*$, it is enough to prove that:

Claim: If $u_i^{\epsilon}(x) = m$ then there exists an universal constant τ such that if $y \in B_{1+\frac{\rho}{2}}(x)$, (purple area) then

$$u_j^{\epsilon}(y) \le ce^{-\frac{cm^{\alpha}r^{\beta}}{\epsilon}}, \quad j \ne i$$

where $ho = rac{ au mr}{\sup_{\partial\Omega} \phi_i}$, and r such that $B_r(x)$ is far from the boundary.

Why?

To prove $\Delta u_i^{\epsilon}(x) \to 0$, $x \in S_{\sigma}^*$, it is enough to prove that:

Claim: If $u_i^{\epsilon}(x) = m$ then there exists an universal constant τ such that if $y \in B_{1+\frac{\rho}{2}}(x)$, (purple area) then

$$u_j^{\epsilon}(y) \le ce^{-\frac{cm^{\alpha}r^{\beta}}{\epsilon}}, \quad j \ne i$$

where $\rho = \frac{\tau m r}{\sup_{\partial \Omega} \phi_i}$, and *r* such that $B_r(x)$ is far from the boundary.

Why?

For all $x \in S^*_{\sigma}$ $\Delta u_i^{\epsilon}(x) = \frac{1}{\epsilon^2} u_i^{\epsilon}(x) \underbrace{\sum_{i \neq j} \int_{B_1(x)} u_j^{\epsilon}(y) dy}_{\text{same if } x \in S_{\sigma}}$ $\leq C \frac{1}{\epsilon^2} u_i^{\epsilon}(x) |B_1(x)| e^{-\frac{c m^{\alpha} r^{\beta}}{\epsilon}} \to 0$

Important facts:

Fact 1:

$$\begin{array}{ll} \Delta u(x) \geq \theta^2 u(x), & x \in B_{\rho}(0) \\ u(x) \geq 0, \end{array} \Rightarrow \frac{u(0)}{\sup_{B_{\rho}(0)} u(x)} \leq C \, e^{-c\theta\rho} \end{array}$$

Fact 2:

$$egin{array}{lll} \Delta u(x) \geq 0, & x \in B_r(0) \ u(x) \leq 1, & x \in B_r(0) \ u(0) = m > 0 \ B \, {
m ball} \end{array}$$

 $\Rightarrow \exists \tau > 0 \text{ universal} \\ \text{const. such that} \\ \text{if } \operatorname{dist}(B,0) \leq \tau mr \\ \text{then} \\ \end{cases}$

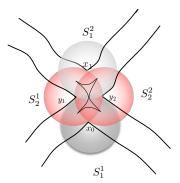
 $\sup_{\partial B \cap B_r(0)} u(x) \geq \frac{m}{2}$

Classification of the singular sets (n=2)

Theorem

Let $S_i = \{u_i > 0\}$ and consider two points that realize the distance 1 across the boundary, $x_0 \in \partial S_i$ and $y_0 \in \partial S_j$. Assume that they are such that S_i had an angle θ_i at x_0 and S_j has an angle θ_j at y_0 . Then

$$\theta_i = \theta_j.$$



Open Problems:

- Regularity for higher dimensions;
- Different weights and shapes of the domain of inter-competition (for instance star-shaped sets);
- Evolution problem associated.

Happy birthday dear Luisa!! Thank you!