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This talk is about results from joint work with

R. Enguiça and A. Gavioli ( DCDS 2013),

I. Coelho (AMC 2014),

M. Garrione (BVP 2015) and

A. Gavioli (AML 2015).

There are very recent results of Alessandro Audrito and Juan
Luis Vásquez sharing some common aspects with parts of this
presentation.
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is motivated by diffusion modelled by the p-Laplacian in the
presence of advection. Consider the PDE
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where k > 0.
◮ Looking for travelling waves in this case leads to

(|u′|p−2u′)′ + (c − ku)u′ + f (u) = 0 (3)

with boundary conditions u(−∞) = 0, u(+∞) = 1, which
was considered in the classical case p = 2 in Murray,
Malaguti and Marcelli... Reduction to the first order gives
(1) with h(c, u) = c − ku, and boundary conditions
y(0) = 0 = y(1) where y = u′p.
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◮ It may be shown that (1) has a range of admissible speeds
[c∗,+∞[ and that c∗ is also characterized in terms of the
behaviour of trajectories at the origin.
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◮ Using lower solutions arguments, it is easy to see that c∗ is
a monotone function of h and f in the sense that

c∗(h1, f1) ≤ c∗(h2, f2) if h1 ≥ h2, f1 ≤ f2.
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1
p − f (u)), 0 ≤ u ≤ 1,

y(0) = 0 = y(1). Then
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y(u)
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◮ Example. Take an example with advection:
h(c, u) = (c − ku) (k > 0) and f (u) = uq−1(1 − u)q−1

which is the analogue of the Fisher’s reaction (p = 2).



◮ First note that the corresponding equation has a solution of
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Since the real function x + 1
xq−1 attains its minimum at

x = (q − 1)1/q, we compute the corresponding values of k
and c for which c is minimum:

k0 = 2(q − 1)1/q and c0 = q1/qp1/p.
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◮ On the other hand, if k = 0 it is known that c∗ = q1/qp1/p.
By monotonicity of c∗ with respect to h:
c∗ = q1/qp1/p for 0 ≤ k ≤ k0.



◮ Example. The analogue of the Zeldovich equation in this
context corresponds to h(c, u) ≡ c (k = 0) and
f (u) = uq(1 − u)q−1. We find a solution of the form

y = αuq(1 − u)q
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◮ For the analogue of the Zeldovich equation with the
advection term h(c, u) = c − ku, where k > 0: there are
solutions of the form y(u) = αuq(1 − u)q. with

α = α(k) >
(

k
2

)q
being the only solution of the equation

kx1/p − 2x = −1 and c = c(k) = α1/q.
Notice that c depends continuously on k , is increasing and
that c → 2−1/q as k → 0 and c → +∞ as k → +∞.
Finally, since limu→0

f (u)
uq−1 = 0 and

limu→0
y(u)
uq = α = w+(0), proposition [Asymptotics] implies

that c∗ = α(k)−1/q for all k ≥ 0.
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2



+ f (u), (7)

and c is the wave speed.
◮ Assumptions on P

1. P ∈ C1([0,1[)
2. P(0) = 0, and P ′(0) = 1
3. P is strictly increasing, P(1−) = +∞ and

∫ 1
0 P(x)dx <∞.
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◮ Since for monotone solutions there exists an inverse
function t(u), we may define φ(u) := P(u′(t(u))).
Therefore u′(t(u)) = P−1(φ(u)) and setting

v(u) := P−1(φ(u))

it is easily seen that

φ′(u)v(u)− cv(u) + f (u) = 0

◮ and denoting by Q(x) the primitive of x 7→ P ′(x)x such that
Q(0) = 0, we obtain

d
du

Q(v(u))− cv(u) + f (u) = 0

Finally, let
y(u) = Q(v(u)), R = Q−1.

◮ Then y(u) satisfies the first order equation

y ′ = cR(y)− f (u) (8)

where differentiation is done with respect to u. The
boundary conditions for u(t) in the real line translate into
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◮

y(0) = 0 = y(1) (9)

We therefore look for solutions of (8) satisfying the
boundary conditions (9).

◮ The solutions of (5)-(6) are recovered by means of the
Cauchy problem

u′ = R(y(u)), u(0) =
1
2

(10)

Remark
Note that the assumptions on P imply that limy→0

R(y)√
y =

√
2.

Remark
If P(x) = x√

1−x2
, then R(y) =

√
y(y+2)
y+1 .

Proposition
There exists a 1 − 1 correspondence between solutions u(t) of
(5)-(6) (up to translation) and solutions y(u) of (8)-(9) in such a
way that (10) holds.



Proof Given a solution y(u) of (8)-(9), the solution of the Cauhy
problem (10) is defined in ]t−, t+[, where
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Proposition
If y(u) is a solution of (8) such that y(0) = 0 and for some η
y(u) > 0 for 0 < u < η, then (i) E(y)′(0) = d

du E(y(u))|u=0

exists and is a root x of x2 − cx + f ′(0) = 0. (ii) c2 ≥ 4f ′(0).

Proposition
(i) The set of admissible speeds of (8)-(9) is an interval
[c∗,+∞) where c∗ > 0. (ii) Let P(x) = x√

1−x2
. If f satisfies for

some M > 0 the estimate

f (u) ≤ Mu√
1 + Mu2

∀u ∈ [0, 1] (∗)

then c∗ ≤ 2
√

M.



Proposition
If y(u) is a solution of (8) such that y(0) = 0 and for some η
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Proposition
(i) The set of admissible speeds of (8)-(9) is an interval
[c∗,+∞) where c∗ > 0. (ii) Let P(x) = x√
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. If f satisfies for

some M > 0 the estimate

f (u) ≤ Mu√
1 + Mu2
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then c∗ ≤ 2
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◮ Example If f (u) = u(1 − u)/
√

1 + u2, we have c∗ = 2.



Asymptotics at u = 0
We set a new assumption, also satisfied by the model problem
(R1) |R(t)− R(s)| ≤ 1√

2t
|t − s| ∀ s ≥ t ≥ 0.

Lemma
Assume (R1). Consider the initial value problem

y ′(u) = cR(y)− f (u), y(0) = 0 (11)

Let there η > 0, 0 < A < B, 0 ≤ a < b, 0 < c1 < c2 < 2
√

2A
be constants such that

a ≤ f (u)
u

≤ b, if 0 < u ≤ η (12)

2A2 − c
√

2A + b < 0 < 2B2 − c
√

2B + a ∀c ∈ [c1, c2]. (13)

Then, decreasing η if necessary: for c ∈ [c1, c2] problem (11)
has a unique solution y such that A2u2 ≤ y(u) ≤ B2u2 for
0 ≤ u ≤ η. This solution depends continuously on c.

Proof is based on the Banach fixed point argument...



On the basis of this lemma it is easy to obtain the following
proposition. We denote by λ−(c) ≤ λ+(c) the roots of the
quadratic equation x2 − cx + f ′(0) = 0.

Proposition (ASYMPTOTICS)
Let c be an admissible speed of (8)-(9) and y be the
corresponding solution of (8)-(9).
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quadratic equation x2 − cx + f ′(0) = 0.

Proposition (ASYMPTOTICS)
Let c be an admissible speed of (8)-(9) and y be the
corresponding solution of (8)-(9).

1. If c = c∗,
(E(y))′(0) = λ+(c).

2. If c > c∗,
(E(y))′(0) = λ−(c).



◮ Example: consider the analogue of Zeldovich equation,
where

f (u) =
u2(1 − u)
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1 + β(u − u2)2
.



◮ Example: consider the analogue of Zeldovich equation,
where

f (u) =
u2(1 − u)

√

1 + β(u − u2)2
.

◮ Here the ansatz

y(y + 2) = β(u − u2)2

or equivalently

y = −1 +
√

1 + β(u − u2)2

yields a solution with β = 1
2 and c = 1√

2
. Since f ′(0) = 0

and limu→0
y(u)
u2 = 1

4 , we conclude from proposition
[ASYMTOTICS] that this is the critical speed.



THE “CURVATURE” OPERATOR

◮

ut =

(

ux
√

1 + u2
x

)

x

+ f (u).















(

u′
√

1 + u′2

)′
− cu′ + f (u) = 0

u(−∞) = 0, u(+∞) = 1;

(14)

{

(P(u′))′ − cu′ + f (u) = 0
u(−∞) = 0, u(+∞) = 1,

(15)
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◮ where
P(v) =

v√
1 + v2

.



◮ φ(u) = P(u′(t(u))), v(u) = P−1(φ(u)), leads to
d
du Q(v(u))− cv(u) + f (u) = 0, where Q(v) is a primitive of
vP ′(v). Explicitly, Q(v) =

∫ v√
1+v2

3 dv , so that we can

choose

Q(v) = 1 − 1√
1 + v2

, (Q(0) = 0). (16)



◮ φ(u) = P(u′(t(u))), v(u) = P−1(φ(u)), leads to
d
du Q(v(u))− cv(u) + f (u) = 0, where Q(v) is a primitive of
vP ′(v). Explicitly, Q(v) =

∫ v√
1+v2

3 dv , so that we can

choose

Q(v) = 1 − 1√
1 + v2

, (Q(0) = 0). (16)

◮ Setting R = Q−1, R(y) =
√

y(2−y)
1−y , 0 ≤ y < 1, this

gives
y ′ = cR(y)− f (u),

Taking into account the boundary conditions, we thus want
to study

{

y ′ = c
√

y(2−y)
1−y − f (u)

y(0) = 0 = y(1),
(17)



Proposition (A range of admissible speeds)
Let f be of class A and assume that there exists M > 0 such
that the following estimate holds:

f (u) ≤ Mu
√

1 − min{M, 1}u2
,

for every u ∈ [0, 1]. Then, for every

c ∈ [2
√

M,+∞[ ,

problem (17) has a solution.



Reaction of “type C”
Another important form of the reaction term is the so called
“type C”. Explicitly, we define

C =

{

f ∈ C([0, 1])
∣

∣

∣

f (0) = f (1) = 0 and there exists θ ∈ ]0, 1[ s.t.

f (u) < 0 for u ∈ ]0, θ[ , f (u) > 0 for u ∈ ]θ, 1[ .

}



Reaction of “type C”
Another important form of the reaction term is the so called
“type C”. Explicitly, we define

C =

{

f ∈ C([0, 1])
∣

∣

∣

f (0) = f (1) = 0 and there exists θ ∈ ]0, 1[ s.t.

f (u) < 0 for u ∈ ]0, θ[ , f (u) > 0 for u ∈ ]θ, 1[ .

}

Proposition
Let f ∈ C. Then, there exists a positive admissible speed for f if
and only if
the two following conditions simultaneously hold:

∫ 1

0
f (u) du > 0,

∫ 1

0
f−(u) du < 1, (18)

where f−(t) = max{−f (t), 0}. If this is true, the admissible
speed is unique.



A VARIATIONAL PROPERTY OF THE CRITICAL
SPEED (p-LAPLACian CASE)

◮ Back to the p-Laplacian case (without advection), consider
travelling waves to reaction-diffusion equations driven by
the one-dimensional p-Laplacian operator, namely

∂u
∂t

=
∂

∂x

[

∣

∣

∣

∣

∂u
∂x

∣

∣

∣

∣

p−2 ∂u
∂x

]

+ f (u), (19)
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∣

∣
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∣

∣

∣

∣
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]

+ f (u), (19)

◮ The relevant front wave profiles u(x + ct) with speed c are
given by the (monotone) solutions of the second order
problem

(|u′|p−2u′)′ − cu′ + f (u) = 0 (20)

satisfying the limit conditions

u(−∞) = 0, u(+∞) = 1 (21)



◮ With q be the conjugate of p, that is 1
p + 1

q = 1, the
solutions of the parametric first order boundary value
problem

y ′ = q(c y+
1
p −f (u)), 0 ≤ u ≤ 1, y(0) = 0 = y(1), y > 0 in ]0

(22)
yield the trajectories of solutions of (20)-(21) via the

relationship
u′ = y(u(t))1/p.

This problem is a particular case of the one considered in
the first part (h(c, u) ≡ c).



◮ With q be the conjugate of p, that is 1
p + 1

q = 1, the
solutions of the parametric first order boundary value
problem

y ′ = q(c y+
1
p −f (u)), 0 ≤ u ≤ 1, y(0) = 0 = y(1), y > 0 in ]0

(22)
yield the trajectories of solutions of (20)-(21) via the

relationship
u′ = y(u(t))1/p.

This problem is a particular case of the one considered in
the first part (h(c, u) ≡ c).

◮ We recall the natural assumptions for this problem.

(Hp) Mp := sup0<u<1
f (u)
uq−1 < +∞.

(H ′
p) µ := limu→0+

f (u)
uq−1 exists, 0 ≤ µ < +∞.



◮ There is a 1-1 correspondence between solutions of
(20)-(21) (up to translation) taking values in ]0, 1] and
solutions of (22) that are strictly positive in ]0, 1[. These
sets of solutions are nonempty provided (Hp) holds. Also,
basic properties of the profiles and their speeds, now
classical in the FKPP theory (p = 2), were extended to the
p-Laplacian model (Enguiça, Gavioli, S.). In particular, if
(Hp) holds, the set of admissible speeds – that is, values of
the parameter c such that (22) has a solution – is an
interval [c∗,+∞[ where

µ
1
q p

1
p q

1
q ≤ c∗ ≤ M

1
q p

1
p q

1
q (23)

(the first inequality being valid if the stronger (H ′p) holds).
The minimum admissible value c∗ of the parameter c is
called critical speed.
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sets of solutions are nonempty provided (Hp) holds. Also,
basic properties of the profiles and their speeds, now
classical in the FKPP theory (p = 2), were extended to the
p-Laplacian model (Enguiça, Gavioli, S.). In particular, if
(Hp) holds, the set of admissible speeds – that is, values of
the parameter c such that (22) has a solution – is an
interval [c∗,+∞[ where

µ
1
q p

1
p q

1
q ≤ c∗ ≤ M

1
q p

1
p q

1
q (23)

(the first inequality being valid if the stronger (H ′p) holds).
The minimum admissible value c∗ of the parameter c is
called critical speed.

◮ For the case of linear diffusion (p = 2), variational
caracterizations of the critical speed c∗ are known (Arias,
Campos, Pérez, S. (2004), and Benguria, Dépassier,
Méndez (2004)). Let us exhibit a variational property of c∗

in the framework of the p-Laplacian.



Remark
We recall the role played by functions of type B. A function
f : [0, 1] → R is said to be of type B if it is continuous and there
exists δ ∈]0, 1[ such that f (s) = 0 if 0 ≤ s ≤ δ or s = 1, and
f (s) > 0 if δ < s < 1.
It is known that if f is of type B there exists exactly one
admissible speed c∗ of (20)-(21), that is, (22) has a positive
solution for exactly this value of the parameter c. Moreover, if fn
is a nondecreasing sequence of functions of type B and
limn→∞ fn(x) = f (x), then with obvious notation
limn→∞ c∗(fn) = c∗(f ). This is used in the proof of the main
result.



Some equivalent boundary value problems

For convenience, we start by considering a different model, with
homogeneity of degree p − 1 in the derivatives. Consider the
problem

(u′p−1)′ − cp−1u′p−1 + f (u) = 0. (24)

u(−∞) = 0, u(+∞) = 1 (25)

which, by the way, may be seen as the search for travelling
waves of the form u(x + ct) for the quasilinear parabolic
equation in one spacial dimension.

∂(up−1)

∂t
=

∂

∂x

[

∣

∣

∣

∣

∂u
∂x

∣

∣

∣

∣

p−2 ∂u
∂x

]

+ f (u), (26)



The homogeneity appearing in the quasilinear term of (24 ) is
used in the following way. If we perform the change of variable
s = ekt with k > 0, and define v(s) = u(t), this problem is seen
to be equivalent to the following boundary value problem in
[0,+∞[

(v ′p−1)′ +
1
kp

f (v(s))
sp = 0 (27)

v(0) = 0, v(+∞) = 1, v ′ > 0 (28)

provided
cp−1 = k(p − 1).



◮ Another convenient interpretation of the problem (24) -(25)
is given by the first order model that describes a phase
portrait of the second order equation.
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◮ Letting ϕ denote the function such that u′ = ϕ(u) we easily
see that ϕ satisfies

(p − 1)ϕp−2ϕϕ′ = cp−1ϕp−1 − f (u)
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◮ Letting ϕ denote the function such that u′ = ϕ(u) we easily
see that ϕ satisfies

(p − 1)ϕp−2ϕϕ′ = cp−1ϕp−1 − f (u)

◮ so that ψ = ϕp solves

ψ′ = q(cp−1ψ
1
q − f (u)) (29)

ψ(0) = 0, ψ(1) = 0, ψ > 0 in ]0, 1[. (30)

◮ Acording to what has been recalled in the Introduction,
(29) -(30) has solutions provided that

(Hq) Mq := sup0<u<1
f (u)
up−1 < +∞.



Rewriting this as ψ′ = p(cp−1 q
pψ

1
q − q

p f (u)) we assert that the
set of admissible speeds c is an interval [c∗,+∞[ where

c∗p−1 ≤ M
1

p q. If, in addition, we assume the stronger
assumption

(H ′
q) ν := limu→0+

f (u)
up−1 exists, 0 ≤ ν < +∞

then we also have the lower estimate

c∗p−1 ≥ ν
1

p q. (31)

Proposition
Let f be of type A and (Hq) hold, or let f be of type B. Then the
following are equivalent
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Rewriting this as ψ′ = p(cp−1 q
pψ

1
q − q

p f (u)) we assert that the
set of admissible speeds c is an interval [c∗,+∞[ where

c∗p−1 ≤ M
1

p q. If, in addition, we assume the stronger
assumption

(H ′
q) ν := limu→0+

f (u)
up−1 exists, 0 ≤ ν < +∞

then we also have the lower estimate

c∗p−1 ≥ ν
1

p q. (31)

Proposition
Let f be of type A and (Hq) hold, or let f be of type B. Then the
following are equivalent

◮ -(24)-(25) [2nd order, real line] has a monotone solution
with u′ > 0 in some interval ]−∞, b[, and u(b−) = 1

◮ -(29) -(30) [ 1st order] has a solution which is positive in
]0, 1[

◮ - (27) -(28)[2nd order, half-line] with k = cp−1

p−1 has a
(concave) solution with v ′ > 0 in some interval ]0, β[, and
u(β−) = 1.



Remark
If f is of type B, [2nd order, half-line] is solvable only for
k = k∗ := (c∗)p−1

p−1 .

Using Proposition [Asymptotics] it is shown that



Remark
If f is of type B, [2nd order, half-line] is solvable only for
k = k∗ := (c∗)p−1

p−1 .

Using Proposition [Asymptotics] it is shown that

Proposition
Suppose that ψ solves [ 1st order] with c > c∗. Then

lim
u→0

ψ(u)
up <

(

cp−1

p

)p

.



A constrained minimum problem
◮ We relate [2nd order, real line] with the nonlinear singular

boundary value problem

(v ′p−1)′ + λ
f (v(s))

sp = 0, v(0) = 0, v(+∞) = 1, v ′ > 0

(32)
where λ is a parameter.
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A constrained minimum problem
◮ We relate [2nd order, real line] with the nonlinear singular

boundary value problem

(v ′p−1)′ + λ
f (v(s))

sp = 0, v(0) = 0, v(+∞) = 1, v ′ > 0

(32)
where λ is a parameter.

◮ Extend f with zero value outside [0, 1] and set

F (u) =
∫ u

0
f (z) dz.

◮ In addition we consider the space of functions

E = {v ∈ AC([0,+∞[,R) | v ′ ∈ Lp(0,+∞) , v(0) = 0.}
and the following real functionals on E

J(v) =
1
p

∫ +∞

0
|v ′(s)|p ds, Γ(v) =

∫ +∞

0

F (v(s))
sp ds.

We remark that (Hq) is sufficient for Γ to be well defined
and C1 in E , by Hardy’s inequality.



Set

θ = inf
v∈E\0

J(v)
Γ(v)

. (33)

Theorem
Let f be of type B, or of type A and (H ′

q) holds. We have
νqpθ ≤ 1. If νqpθ < 1 then the inf in (33) is attained. In any
case θ1/p = p−1

c∗p−1 where c∗ is the least admissible value of c so
that (29)-(30)has solutions.



Conclusion
◮ We now come back to the caracterization of the critical

speed for the original problem where f is of type A.
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Conclusion
◮ We now come back to the caracterization of the critical

speed for the original problem where f is of type A.
◮ The front wave profiles with speed c are the monotone

solutions of the second order boundary value problem

(|u′|p−2u′)′ − cu′ + f (u) = 0, u(−∞) = 0, u(+∞) = 1
(34)

◮ We assume (H ′
p).

◮ Consider the space of functions

F = {v ∈ AC([0,+∞[,R) | v ′ ∈ Lq(0,+∞) , v(0) = 0.}
◮ In the previous section we have given a variational

characterization of the least value c such that a certain
parametric first order problem is solvable. By interchanging
p and q, reading carefully the first order equation that
corresponds to our original problem, we obtain:



Theorem
Let f be a function of type A and assume (H ′

p). Define

γ = inf
v∈F\0

1
q

∫ +∞
0 |v ′(s)|q ds
∫ +∞

0
F (v(s))

sq ds
.

Then the critical speed for (34) is the number c∗ given by

γ =
q

pc∗q .

Moreover γ is attained if µpqγ < 1.
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