
Conference for the 65th birthday of Lúısa MASCARENHAS, December 17–19, 2015, Caparica

Developing mathematical tools for real continuum mechanics and physics
Luc TARTAR, University Professor of Mathematics emeritus

Carnegie Mellon University, Pittsburgh, PA, USA

The first week in mathématiques supérieures (lycée Charlemagne, Paris, Fall of 1963), the mathematics
teacher reviewed questions of logic, and observed that if P is false, then ‘P implies Q’ is true, whatever Q
is: how then can one confuse ‘A implies B’ and ‘B implies A’, as my physics teachers often did?
If in a theory a proposition is both true and false, then all the propositions in the theory are both true and
false: the theory is contradictory and should be thrown away. The opposite of contradictory is consistent.
I only learned later about a 1905 “paradox” by RUSSEL (1872–1970, 1950 Nobel Prize in Literature), which
was resolved by inventing a definition for a set, and the “paradox” became a theorem: the collection of all
sets is not itself a set.

One forgot to tell me that one does not know if set theory is consistent, and about the possibility that a
proposition may be undecidable, i.e. neither true nor false: a theorem of GÖDEL (1906–1978) is that in any
consistent theory which contains N (used for coding) there exists an undecidable proposition.
I was surprised by the lack of precision of thermodynamics, and puzzled when my physics teacher “deduced”
from it that the logarithm is a concave function!

At École Polytechnique (Paris, 1965–1967), I was taught analysis by Laurent SCHWARTZ (1915–2002, 1950
Fields Medal), “numerical analysis” by Jacques-Louis LIONS (1928–2001), classical mechanics (the 18th
century point of view) the first year, and continuum mechanics (the 19th century point of view) the second
year, by Jean MANDEL (1907–1982), and the various aspects of physics, by less impressive teachers. I was
puzzled by the dogmatic rules of quantum mechanics, and the assertions of my teacher in astrophysics about
what happens in stars: some physicists behave like religious fundamentalists!

Since I had (oral and written) communication problems I abandoned the idea of becoming an engineer, and
chose to do research in mathematics, with J.-L. LIONS, since he was supposed to be more “applied”, but it
was not the case!
I learned from him the technical tools for solving partial differential equations, like the spaces named after
Sergei SOBOLEV (1908–1989), but in the early 1970s I had no intuition about the mechanics and physics
behind the equations.
The first time I mentioned the continuum mechanics behind the PDE which I discussed was in January 1974,
in Lisboa, invited by João-Paulo CARVALHO DIAS and Hugo BEIRÃO DA VEIGA, whom I had met in Paris
during my studies.
I talked about the so-called Navier–Stokes equation. I did not know that it was written by NAVIER in 1821,
using an argument of energy. SAINT-VENANT deduced it in 1843, by an argument of stress, introduced in
the mean time by CAUCHY (1789–1857), and STOKES rediscovered his argument in 1845.
The equation is dissipative: does it contradict conservation of total energy?

After inventing internal energy, the first principle of thermodynamics is precisely the conservation of total
energy: it does not help giving a name to the “energy disappearing from macroscopic level” without explaining
how it could “disappear”! How good are postulated dissipative equations?
Thermodynamics is not about dynamics, but about situations near equilibrium: the study of equilibria gives
equations of state, which may not be true far from equilibrium, so that the second principle of thermodynamics
is often flawed.
The basic physical laws at microscopic level seem to be conservative: how does irreversibility appear at our
macroscopic level, or at a few mesoscopic levels?
EINSTEIN (1879–1955, 1921 Nobel Prize in Physics) is famous for “God does not play dice”, showing a poor
scientific level: he could not give mathematical or physical arguments for rejecting some equations used in
quantum mechanics. Probabilities are used precisely for badly understood phenomena: using probabilities
is as bad as saying “God gave the equations”.

The equations for diffusion of heat or mass were postulated by FOURIER (1768–1830) and by FICK (1829–
1901), and they may be considered natural if one only knows PDE, but MAXWELL (1831–1879) and
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HEAVISIDE (1850–1925) already understood more general laws, nonlocal in time. Convolution (in t) appears
naturally in Heaviside calculus, which was given sound mathematical foundations by Laurent SCHWARTZ,
and one of his important remarks are that derivation is a also convolution (with a distribution) and that
linearity and invariance by translation (plus minor continuity assumptions) imply convolution.

Maybe under the influence of Clifford TRUESDELL (1919–2000), my colleagues Walter NOLL, Dick MACCAMY

(1925–2011), Bernard COLEMAN, and Victor MIZEL (1931–2005) studied viscoelastic laws, but as another
colleague, Mort GURTIN, pointed out, such laws are not Galilean invariant as they should!

One should identify a good class of nonlinear nonlocal laws, which are Galilean invariant; moreover, the class
should be closed under homogenization.

In the Spring of 1975, I met Joe KELLER (1996/97 Wolf Prize) in Madison: he said that he had not come
to my talk at NYU (New York University) the month before since the title of my talk looked uninteresting
to him. It was a joint work with François MURAT, which we called “control in the coefficients of PDE”,
wrongly using the term control (as our common advisor was doing); it is a question of optimization, which
may be labelled calculus of variations since the unknown is a domain, and the non-existence of an optimal
domain results from an homogenization effect, which François had first discovered in 1970.

When I told Joe that the result of homogenization in the elliptic case (the G-convergence introduced by
Sergio SPAGNOLO in the late 1960s) extends to the “hyperbolic” case, I was puzzled because he said that it
is not true.

We were both right, but it took me some time to understand him, since his argument only applies to the
periodically modulated case which I knew from the (formal) work of Évariste SANCHEZ-PALENCIA in the
early 1970s.

In the general case without any (small) characteristic length which we use, one cannot do the analysis of
BLOCH (1905–1983, 1952 Nobel Prize in Physics), adapted to the periodic case: one sends a wave with a
wavelength of the order of the period, creating resonance effects. My statement was about a framework
u′′n +Anun = f with un(0) = a, u′n(0) = b, but a, b independent of n.

In the late 1970s, I guessed that the spontaneous absorption and emission rules imagined by physicists
should just be their way to describe nonlocal effects induced by homogenization, in a different way than
what Évariste SANCHEZ-PALENCIA had done, since one has to work in an hyperbolic setting.

In a spectroscopy experiment, one sends a monochromatic wave in a gas: light without matter is described
by the Maxwell–Heaviside equation (and not by a scalar wave equation), and matter forces to uses a system
of PDE describing both light and matter, and their interaction, so that the system cannot be linear! This
20th century subject is far from being understood.

Interaction of light and matter cannot be described by a linear system, hence the rules of quantum mechanics
are just a first approximation: one should force the good students to criticize the dogmas for helping the
progress of science!

Using Fourier transform, a general wave can be decomposed into monochromatic waves, but measuring the
(scattering) effects occurring for monochromatic waves does not help for nonlinear effects: if monochromatic
waves of measured wavelengths are absorbed by a first gas, and one uses a mixture of gases (including
the first), some slightly different wavelengths should be absorbed, not necessarily with an interpretation of
Doppler effect!

In courses in quantum mechanics one studies an equation by SCHRÖDINGER (1887–1961, 1933 Nobel Prize
in Physics) with a potential V independent of t. The example of a particle in a box has a discontinuous V ,
implying Dirac masses in the electric field E, which should be locally square integrable (since the density of
electromagnetic energy is quadratic in E and H).

With V chosen smooth, it should evolve according to the Maxwell–Heaviside equation, so why is it chosen
independent of t? There is a time scale for the evolution of V , but if V creates a barrier of potential for an
electron (for example), the time scale for the moving around of the electron in the “box” is much smaller,
hence it is reasonable to freeze the evolution of V .
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DIRAC (1902–1984, 1933 Nobel Prize in Physics) had written earlier an equation for a “relativistic electron”.
Letting c tend to ∞ in Dirac’s equation makes the Schrödinger equation appear, so that it is a model with
c =∞.
Inside an atom, electromagnetic (and other) effects move at the speed of light c, so that the Schrödinger
equation should not be used for such questions, or generally for realistic interaction of light and matter.
FEYNMAN (1918–1988, 1965 Nobel Prize in Physics) invented a method with diagrams for solving a Schröd-
inger equation, and nevertheless obtained good predictions for interaction of particles by selecting particular
diagrams. Why?

Probably the sum of all diagrams is divergent, and different ways of summing might actually give the solutions
of other equations, possibly better.
A probably “classical” exercice: if an ∈ R satisfies an → 0,

∑
n(an)+ = +∞, and

∑
n(an)− = +∞, then

for every b ∈ R there exists a bijection f from N onto itself such that
∑
n af(n) = b: in other words on

may rearrange the terms of the sequence to obtain a converging sum, but the sum can be any number and
showing a reordering giving a measured value proves absolutely nothing!

In his 1924 thesis, L. DE BROGLIE (1892–1987, 1929 Nobel Prize in Physics) proposed that “particles” are
waves, and have a wavelength. One should then work with hyperbolic systems of PDE like Dirac’s equation,
but not Schrödinger’s equation (corresponding to c = +∞). However, Dirac’s equation has a defect, since
DIRAC added a “mass term”. I consider that one should not put it, but leave a possibly different term appear
by homogenization, and it would correspond to the electromagnetic energy stored inside the waves.

In an electromagnetic field, a “particle” of electric charge q follows a force q (E + v × B) (where v is its
velocity), which one calls after H.H. LORENTZ (1853–1928, 1902 Nobel Prize in Physics), although he only
rediscovered the formula 30 years after MAXWELL had written it. POINCARÉ (1854–1912) observed that the
Lorentz force is an action which should come with a reaction, i.e. there is conservation of linear momentum,
so that if a particle receives linear momentum from the electromagnetic field, some waves must take away an
opposite amount of linear momentum, and he concluded in 1900 that the density of electromagnetic energy
is equivalent to a density of mass, with a formula which we now write e = mc2, in a way EINSTEIN wrote
it 5 years after, for a different reason (and he seems to have quoted POINCARÉ on this occasion), but DE

PRETTO (1857–1921) had also arrived at the formula in 1903.
In 1983, when I read about the way DIRAC had written his equation and added a mass term, I thought that
the mass term should not be included.

In analogy with what Doina CIORANESCU and François MURAT did in an elliptic setting (calling “strange
term” something related to concentrations of “energy”), I expect that a similar effect may exist for the
(semi-linear) hyperbolic system of Dirac equation (without mass term) coupled with the Maxwell–Heaviside
equation: DIRAC had expressed the density of charge ρ and the density of current j as sesqui-linear quantities
in ψ ∈ C4, which describes matter, and the coupling makes h appear, which PLANCK (1858–1947, 1918 Nobel
Prize in Physics) had introduced for his light quanta, now called photons.
One difficulty concerns the existence of solutions for such a system, generalizing ideas which I heard in the
early 1980s in a talk of Yvonne BRUHAT, and I hope to extend my ideas about compensated integrability for
that.
With a good grasp on existence of solutions permitting to prepare sequences converging weakly, the next
step would be to prove (or disprove) some assertions of physicists concerning “elementary particles” and
their interactions.

Another part of my program, of a more algebraic/geometric nature, is to exhibit classes of explicit solutions
along the line of the guesses of BOSTICK (1916–1991) concerning electrons or photons. Such a question about
the shape of elementary particles could help understand what kind of concentration effects to expect.
An important property of the coupled system Dirac/Maxwell–Heaviside is to be conformally invariant, so
that it may provide interesting effects at plenty of scales, and it is then of utmost importance to develop
mathematical tools for analyzing solutions of systems of PDE at many scales.
There are interesting conjectures about the size of boundary layers in hydrodynamics, like the triple-deck
of STEWARTSON (1925–1983), and in electromagnetism, more precisely for GTD, the geometric theory of
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diffraction developed by Joe KELLER in the 1950s, which I have in mind, and it would be a good test for
new tools to be able to cast some light on these questions.

It is not clear yet if my multi-scales H-measures are adapted to this study.

There are many questions of continuum mechanics or physics for which I do not guess what kind of new
mathematical tools must be developed, but in the late 1970s, I was thinking about the 1975 remark of
Joe KELLER and I guessed that the rules of absorption and spontaneous emission (used in spectroscopy)
mean that homogenization makes “memory effects” appear, and that I had to look at something different
from what Évariste SANCHEZ-PALENCIA had done in the early 1970s, since I had to work in an hyperbolic
framework.

However, I now find the experimental data puzzling. In 1862, for a gas of hydrogen, ÅNGSTRÖM (1814–1874)
observed 4 lines in the visible spectrum: with unit an Ångström (a tenth of a nanometer) the wavelengths
are 6563, 4861, 4340, 4102. Since a mole of hydrogen (about 2 grams) occupies 22.4 liters and the number
of molecules, named after AVOGADRO (1776–1856), is about 6.023 1023, the characteristic distance between
molecules is about 30 Ångströms, much smaller than the wavelengths creating resonance effects.

Moreover, a molecule of hydrogen is H2 and each H atom contains a core of one proton with an electron
“around”. Why do physicists say that the electron is responsible for the observed absorption and emission
of light in the gas?

There are various ways to fit a curve through 4 points, but in 1885 BALMER (1825–1898) proposed 1
λ =

RH
(
1
4 −

1
n2

)
for n = 3, 4, 5, 6, and RH is now called the Rydberg constant (10967760 m−1). A generalization

of Balmer’s formula, the Rydberg–Ritz formula, was proposed in 1888 by RYDBERG (1854–1919) and RITZ

(1878–1909), as 1
λ = RH

(
1
m2 − 1

n2

)
for m < n.

The case m = 1 gives rays in the UV (ultra violet), observed between 1906 and 1914 by LYMAN (1874–
1954). The cases m ≥ 3 give rays in the IR (infra red): the case m = 3 was observed in 1908 by PASCHEN

(1865–1947), the case m = 4 was observed in 1922 by BRACKETT (1896–1988), the case m = 5 was observed
in 1924 by PFUND (1879–1949), and the case m = 6 was observed in 1953 by HUMPHREYS (1898–1986).

Since a wavelength λ corresponds to a frequency ν = 2π c
λ , it was said that photons of energy 2π h cRH

(
1
m2 −

1
n2

)
are observed, corresponding to jumps between levels of energy 2π h cRH

n2 for n ≥ 1. After a computation of
the spectrum of an operator gave eigenvalues proportional to 1

n2 , a rule of quantum mechanics was invented.

What else than a spectrum gives a list of numbers?

In 1896, ZEEMAN (1865–1943, 1902 Nobel Prize in Physics) found that a magnetic field splits spectral
lines into several components; if it is strong enough (or for non-zero spin) the Zeeman effect is called the
Paschen–Back effect, after BACK (1881–1959) who studied the effect in his 1913 PhD thesis.

In 1913, STARK (1874–1957, 1919 Nobel Prize in Physics) found that an electric field splits spectral lines
into several components, and the “Stark” effect was also found independently by LO SURDO (1880–1949),
so that in Italy one sometimes call it the Stark–Lo Surdo effect.

The splitting of the “lines” is attributed to the spin, an intrinsic angular momentum for “particles”, but I
am not sure what it means.

After technical improvements, a density of absorption was observed, looking like a Lorentzian (rescaling of
1

1+x2 ), as for the restriction to R of the real value of a meromorphic function with single poles near R.

In 1983, I heard Jean LERAY (1906–1998, 1979 Wolf Prize) say that physicists never mention the spectrum
corresponding to a gas of helium He, suggesting that the measured values do not follow the rules of quantum
mechanics!

Since physicists confused ‘A implies B’ with ‘B implies A’, nature has no reason to follow the strange
rules of quantum mechanics: worse, physicists transformed them into dogma, so they look like religious
fundamentalists.

Since 1924 (L. DE BROGLIE’ thesis), one knows that “particles” are waves. The 19th century point of view
is that waves require PDE, of hyperbolic nature: mixing ODE (the 18th century point of view) with PDE is
a backward move.
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One must go beyond PDE : hyperbolic PDE with small scales produce a larger (not yet characterized) class
of equations by homogenization.
Since the homogenization of first order (hyperbolic) equations ∂

∂t +
∑
j a

n
j

∂
∂xj

(with div(an) nice) would

probably explain turbulence (“the most important unsolved problem of classical physics”, FEYNMAN said),
I looked at the simpler case ∂

∂t + an, with an independent of t: it is far from the physical problem which I
wanted to tackle, but it gave some interesting results.
Since the limit produces a memory effect, it is a simple example where a (weak) limit of semigroups is not a
semigroup: I expected that the weak limit u∞ of the solutions of dun

dt +anun = f(·, t), with un(0) = v would

satisfy du∞
dt + a∞u∞ −

∫ t
0
K(t − s, ·)u∞ ds = f , with u∞(0) = v; since f ≥ 0, v ≥ 0 implies un ≥ 0, hence

u∞ ≥ 0, I hope that the (sufficient) condition K ≥ 0 would hold.
Since Laplace transform gives (p+an)Lun = Lf + v and (p+a∞−LK)Lu∞ = Lf + v, LK would be given
explicitly using the Young measure ν of an.

I had heard in a 1977 talk by a physicist (Daniel BESSIS) about a theorem of S. BERNSTEIN (1880–1968)
characterizing the Laplace transform of a non-negative measure: ψ should be C∞ on (0,∞) and satisfy

(−1)m dmψ
dpm ≥ 0 on (0,∞) for all integers m ≥ 0. I found a proof that K ≥ 0 using properties of Bernstein

functions, which I checked with my former colleague Yves MEYER, who showed me a simpler argument using
convolution, and it was the one I mentioned to Lúısa when I asked her to generalize my argument to the case
where an depends upon x and t : she used an argument of semi-discretization in t for solving the question,
and it was only in the late 1980s that I found an argument (using power expansions) needing less regularity
in t, which I wrote for the 60th birthday of my former colleague Bernard COLEMAN.
Explicit solutions involve es an , so that I used 1-point statistics for an, called parametrized measures by
GHOUILA-HOURI (1939–1966), but better called Young measures now, after Laurence YOUNG (1905–2000).

In the early 1970s, I worked at a direct approach (without using control theory) to Riccati equation, which
has order preserving property, and I read about a theorem of LÖWNER (1893–1968): he looked at the
continuous functions φ on [a, b] which are monotone for symmetric operators, i.e. a I ≤ P ≤ Q ≤ b I implies
φ(P ) ≤ φ(Q) for all such symmetric operators on a Hilbert space H; the characterization depends upon the
dimension of H, but for infinite dimension it is a class named after his advisor, PICK (1859–1942), those
functions which extends to the upper half complex space =(z) > 0 into a holomorphic function satisfying
=
(
ψ(z)

)
> 0, of which a representation formula was mentioned.

After the method with Bernstein functions or convolution, I thought of using the characterization of Pick
functions, also named after NEVANLINNA (1895–1980) or STIELTJES (1856–1894), and it shows that K is
actually a Bernstein function. I showed the approach to Lúısa, who used it afterwards; I asked Ciprian
FOIAS for a reference, but the one he gave me was not so early.

The characterization of Pick functions also played a role in questions of “homogenization” seen by physicists,
David BERGMAN and Graeme MILTON, mixed with approximants named after PADÉ (1863–1953). Pick
functions are adapted to the isotropic case, but effective tensors are not always scalar for real questions of
homogenization, so that one needs to find an adapted class of functions of matrices, unknown as far as I
know, but I do not read much.
For a conference at IMA in Minneapolis in 1984, I described a few remarks on homogenization, and one was

an application with François MURAT to a slightly academic problem, −an(y) ∂
2un

∂x2 + bn(y)un = f(x, y) in
R× (y−, y+): one starts by applying a partial Fourier transform Fx, one uses the Young measure of (an, bn)
for taking the limit, one applies the same identity for a characterization of a Pick function, and one finally
invert explicitly Fx, and an additional term appears, corresponding to a nonlocal effect in x (a convolution
by an even function, giving the same weight to right or left in x).

Since Ennio DE GIORGI (1928–1996, 1990 Wolf Prize) had once mentioned to me a particular case of an
equation ∂un

∂t + an(y) ∂un

∂x = f(x, y, t) with un(x, y, 0) = v(x, y), I wrote an article about memory effects for
his 60th birthday, and I included this equation, attacked in the same way: one starts by applying a Laplace
transform L in t and a partial Fourier transform Fx, one uses the Young measure of an for taking the limit,
one applies the same identity for a characterization of a Pick function but now outside the real axis (for p
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purely imaginary), and one finally invert explicitly L and Fx, and an additional term appears, corresponding
to a nonlocal effect in x and t.
However, before my article was finished I had received an article by my former student Kamel HAMDACHE,
with his usual collaborators at the time, Youcef AMIRAT and Hamid ZIANI (1949–2004), where they had
made exactly these computations, so that they have priority. They also studied the new type of equation
obtained directly for showing the finite propagation speed property.

One has ∂u∞
∂t + a∞(y) ∂u∞

∂x −
∫ t
0
∂2u∞
∂x2 (x−λ (t− s), y, s) dµy(λ) ds = f(x, y, t) with u∞(x, y, 0) = v(x, y), and

dµy is a non-negative measure which is a nonlinear transform of the Young measure of an.

In a subsequent article, they wrote the equation as a system from kinetic theory, ∂u(x,y,t)∂t +a∞(y)∂u(x,y,t)∂x =
∂
∂x

(∫
F (x, y, t;λ) dµy(λ)

)
, with u∞(x, y, 0) = v(x, y), and ∂F (x,y,t;λ)

∂t +λ ∂F (x,y,t;λ)
∂x = ∂u(x,y,t)

∂x , with F (x, y, 0;λ) =

0, or explicitly F (x, y, t;λ) =
∫ t
0
∂u
∂x (x− λ (t− s), y, s) ds.

If the sequence an takes m different values, the Young measures dν are combinations of m Dirac masses, but
the measures dµ are combinations of m − 1 Dirac masses, at intermediate values (roots of a polynomial of
degree m− 1).
It is important to notice that one does not postulate a model from kinetic theory, but one deduces it in a
mathematical way for describing the effective equation to use (as a consequence of homogenization).

A next step would be to consider more general oscillating sequences (with divergence free coefficients), but
the Young measures will probably not be sufficient for describing the limiting effective equation, as for the
homogenization of elliptic equations once one generalizes the one-dimensional situations.

It is important to notice that Navier–Stokes equation has been postulated, and if some people consider it
natural it is because they cannot think in a new way.
18th century mechanics requires ODE, 19th century mechanics requires PDE, but 20th century mechan-
ics/physics, like atomic physics, meteorology, phase transitions, plasticity, turbulence, requires going beyond
PDE, because of the existence of small scales, which should not be averaged in a naive way.
For questions of small amplitude (elliptic) homogenization, I introduced a new tool in the late 1980s, which
I called H-measures, and since (elliptic) homogenization is a “nonlinear microlocal theory”, and H-measures
are “quadratic microlocal objects”, it is natural that they help.

However, there is no understanding yet of how to continue the expansion.
One should probably not go to cubic terms, which are difficult to define outside the periodic case (but nature
with only one scale is some kind of a joke!).
If one avoids Taylor expansions, should one mimic Padé approximants?

For the nonlocal effects in t studied by Lúısa, I wrote an approach by power expansion in my article for the
60th birthday of Bernard COLEMAN, but this approach fails for the hyperbolic situations studied by Youcef
AMIRAT, Kamel HAMDACHE, and Hamid ZIANI, since all the terms are supported by characteristic lines
moving at velocity a∞ while the effective equation does not, except if there are no oscillations (the Young
measure is a Dirac mass, and µ = 0): the power series does not converge in the sense of distributions; it
might converge in the sense of analytic functionals, for which there is no notion of support.
For a nonlinear ODE case, the power expansion reminds of Feynman diagrams: a difficulty of bookkeeping
for all the terms, and of avoiding divergent sums.

If one starts from a problem which has a solution, and one approaches the solution by a power series which
diverges, one may find a different approach for computing the solution: one has seen plenty of examples of
this kind since the work of CAUCHY on holomorphic functions and extension by analyticity.
Physicists often are in a different situation, working on an equation which does not describe well the phe-
nomenon which they are interested in (like using a linear framework for studying an interaction, or using
models corresponding to c = +∞), so that they should not be so interested in its solution.
Nevertheless, they may compute the solution and end up with a divergent series, and it then becomes sheer
logical nonsense that they are happy if they find a way to “sum the divergent series” which gives numbers
looking like the measurement: worse than just confusing ‘A implies B’ with ‘B implies A’, they do not build
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an intuition for rejecting wrong equations! Are students aware of the mistakes? Must they stay silent to not
damage their career?

Galilean invariance is basic in mechanics, but it must take a different form (to be discovered) in situations
where the velocity field oscillates, which is the basic hypothesis for turbulent flows: too many “specialists”
are still deluded enough to play probabilistic games, without observing that they are not compatible with
the equations of hydrodynamics, but the equations one uses now for hydrodynamics are not that good, and
this question should be discussed.
In the early 1970s, Jacques-Louis LIONS taught courses on singular perturbations and boundary layers, and
I heard specialists of continuum mechanics say that his ideas concerning fluids were not so good, since he
expected that the equation named after EULER (1707–1783) would appear at the limit of “Navier–Stokes”
equation for vanishing viscosity, but one needed to use ideas by OSEEN (1879–1944), which I never looked at.
For boundary layers, one only mentioned the ideas of PRANDTL (1875–1953), and Olga OLEINIK (1925–2001)
had studied the existence of the solutions of Prandtl’s equation.

It was only in 1982 in Madison that Richard MEYER (1919–2008) mentioned to me Stewartson’s triple deck,
and Jean-Pierre GUIRAUD gave me afterward some intuition about it. No one has assessed the relation of
these models to “Navier–Stokes” equation, but my impression was that the specialists of boundary layers
dropped some terms in “Navier–Stokes” equation, not so much because they are negligible but because the
equation is not so good near the (solid) boundaries!
At a meeting in Saint-Étienne in the beginning of 1986, after hearing a talk about deriving Euler equation
from “Navier–Stokes” equation under strong hypotheses (a technical way to prove that if there are no
problems, then everything is OK), Sergëı GODOUNOV said that he did not understand why one was doing
all that, since the good fluid models use Maxwell laws.
It is more easy to write articles on subjects which one already knows, for example for having already published
on it, but it seems that some equations are not so good models, although no one talks about that.

Jacques-Louis LIONS once said that semigroup theory cannot be deep since it applies to too many equations.
One can discuss conservation of energy in some cases, related to invariance with respect to translations in
t, but hiding the space variable x inside the definition of a functional space does not help understanding
conservation of linear momentum, related to invariance with respect to translations in x, or conservation of
angular momentum, related to invariance with respect to rotations in x.
Once energy is conserved, one may look at its density and wonder where it is located, and since weak
convergence was a classical tool it was easy to see that energy is not conserved by taking weak limits, and it
gives a way to “hide energy” at mesoscopic levels (since physicists and material scientists prefer to keep the
qualifier microscopic for the level of atoms), but the wave equation, the Maxwell–Heaviside equation, the
linearized elasticity equation share an important (physical) property of equipartition of hidden energy.

This follows from simple applications of the compensated compactness theory, developed with François
MURAT in 1976, as a generalization of our Div-Curl lemma of 1974, sufficient for the wave equation.
In order to go a step further, and understand what happens to the “hidden energy”, one uses H-measures,
which I developed first (in the late 1980s) for proving theorems of small amplitude homogenization, which
was my way of interpreting guesses by physicists. I then checked that they could follow the propagation
of oscillations and concentration effects, which is possible because these objects are (quadratic) microlocal
objects.
One should observe that Lars HÖRMANDER (1931–2012, 1962 Fields Medal, 1988 Wolf Prize) did something
quite different: he defined microlocal regularity (which does not seem connected to physics at all), and he
proved results of propagation for it; his followers do a lot of propaganda by calling these results “propagation
of singularities”, which they are not.

H-measures use no characteristic length, since none was necessary for the small amplitude homogenization
results which were my initial motivation.
Patrick GÉRARD developed similar objects (which he called microlocal defect measures) for a question of
compactness by averaging (which I had failed to prove using H-measures), but he wrote that only the
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support is important (in the spirit of Lars HÖRMANDER’s wave front set): it is totally unfair to attribute
him my results which are not qualitative but quantitative, like getting numerical values in homogenization,
or transport equations for quantities on light beams.

My idea for using a characteristic length was to introduce an extra variable xN+1, multiply by a function
of xN+1

εn
and use H-measures in N + 1 dimensions, while Patrick GÉRARD did something a little different,

which he called semi-classical measures. His definition has a problem at ∞, and both our definitions have a
problem at 0, which I corrected by introducing a new variant, using a compactification of RN \ {0} with a
sphere at 0 and a sphere at ∞.

My new definition also served in correcting an initial mistake of Pierre-Louis LIONS (1994 Fields Medal)
and Thierry PAUL, who had written the silly statement that one can recover H-measures from semiclassical
measures, and they introduced the same object than Patrick GÉRARD but called it after WIGNER (1902–1995,
1963 Nobel Prize in Physics) because they used his transform.
With Patrick GÉRARD, we found a quicker way to interpret their approach, by considering 2-point corre-
lation functions (which need L2 bounds, but are not defined without a characteristic length) and using a
characterization of the Fourier transform of non-negative measures by BOCHNER (1899–1982) (taught by
Laurent SCHWARTZ in his course at École Polytechnique).
We also observed that one can define an object using 3-point correlation functions (which need L3 bounds)
and obtain transport equation for a diffusion equation with drift (and small viscosity), but without an
analogue of Bochner’s theorem it is not clear what the correct way to look at this result is.

However, such objects are not adapted to the wave equation, since it is not well posed in spaces like W 1,p

for p 6= 2. One possibility is that although one cannot define all cubic quantities (in ux, ut) some special
cubic quantities make sense by effects of compensated integrability or compensated regularity, and I hope
that it could help in proving better existence theorems for the coupled system of Dirac’s equation (without
mass term) and the Maxwell–Heaviside equation, and I have stated a conjecture using a remark which Raoul
BOTT (1923–2005, 2000 Wolf Prize) told me in the late 1980s.

Finally, I have introduced multi-scales H-measures, but it is too early to say if they are the right kind of
object needed for boundary layers and creeping rays in Joe KELLER’s GTD, which seems a much better
reason for light rays to be curved near the surface of the sun than the silly theory by EINSTEIN, who did
not seem to realize that light is electromagnetism, and that there are intense electromagnetic effects near
the surface of the sun!
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