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Gradient damage models coupled with plasticity

The starting point of our analysis is a gradient damage model
coupled with plasticity, recently proposed by Alessi, Marigo, and Vidoli.

The relevant variables are

I the displacement u ,
I the elastic and plastic parts of the strain e and p , and
I the damage variable α .

We consider the case of antiplane shear for an isotropic and
homogeneous material:

I the reference configuration Ω is a bounded open set in Rn (n = 2 for
three-dimensional bodies),

I u and α are scalar functions defined on Ω ,
I e and p are vector functions from Ω into Rn .

R. Toader (Univ. Udine) Fracture in elasto-plastic materials December 17, 2015 1 / 10



Gradient damage models coupled with plasticity

The starting point of our analysis is a gradient damage model
coupled with plasticity, recently proposed by Alessi, Marigo, and Vidoli.

The relevant variables are

I the displacement u ,

I the elastic and plastic parts of the strain e and p , and
I the damage variable α .

We consider the case of antiplane shear for an isotropic and
homogeneous material:

I the reference configuration Ω is a bounded open set in Rn (n = 2 for
three-dimensional bodies),

I u and α are scalar functions defined on Ω ,
I e and p are vector functions from Ω into Rn .

R. Toader (Univ. Udine) Fracture in elasto-plastic materials December 17, 2015 1 / 10



Gradient damage models coupled with plasticity

The starting point of our analysis is a gradient damage model
coupled with plasticity, recently proposed by Alessi, Marigo, and Vidoli.

The relevant variables are

I the displacement u ,
I the elastic and plastic parts of the strain e and p , and

I the damage variable α .

We consider the case of antiplane shear for an isotropic and
homogeneous material:

I the reference configuration Ω is a bounded open set in Rn (n = 2 for
three-dimensional bodies),

I u and α are scalar functions defined on Ω ,
I e and p are vector functions from Ω into Rn .

R. Toader (Univ. Udine) Fracture in elasto-plastic materials December 17, 2015 1 / 10



Gradient damage models coupled with plasticity

The starting point of our analysis is a gradient damage model
coupled with plasticity, recently proposed by Alessi, Marigo, and Vidoli.

The relevant variables are

I the displacement u ,
I the elastic and plastic parts of the strain e and p , and
I the damage variable α .

We consider the case of antiplane shear for an isotropic and
homogeneous material:

I the reference configuration Ω is a bounded open set in Rn (n = 2 for
three-dimensional bodies),

I u and α are scalar functions defined on Ω ,
I e and p are vector functions from Ω into Rn .

R. Toader (Univ. Udine) Fracture in elasto-plastic materials December 17, 2015 1 / 10



Gradient damage models coupled with plasticity

The starting point of our analysis is a gradient damage model
coupled with plasticity, recently proposed by Alessi, Marigo, and Vidoli.

The relevant variables are

I the displacement u ,
I the elastic and plastic parts of the strain e and p , and
I the damage variable α .

We consider the case of antiplane shear for an isotropic and
homogeneous material:

I the reference configuration Ω is a bounded open set in Rn (n = 2 for
three-dimensional bodies),

I u and α are scalar functions defined on Ω ,
I e and p are vector functions from Ω into Rn .

R. Toader (Univ. Udine) Fracture in elasto-plastic materials December 17, 2015 1 / 10



Gradient damage models coupled with plasticity

The starting point of our analysis is a gradient damage model
coupled with plasticity, recently proposed by Alessi, Marigo, and Vidoli.

The relevant variables are

I the displacement u ,
I the elastic and plastic parts of the strain e and p , and
I the damage variable α .

We consider the case of antiplane shear for an isotropic and
homogeneous material:

I the reference configuration Ω is a bounded open set in Rn (n = 2 for
three-dimensional bodies),

I u and α are scalar functions defined on Ω ,

I e and p are vector functions from Ω into Rn .

R. Toader (Univ. Udine) Fracture in elasto-plastic materials December 17, 2015 1 / 10



Gradient damage models coupled with plasticity

The starting point of our analysis is a gradient damage model
coupled with plasticity, recently proposed by Alessi, Marigo, and Vidoli.

The relevant variables are

I the displacement u ,
I the elastic and plastic parts of the strain e and p , and
I the damage variable α .

We consider the case of antiplane shear for an isotropic and
homogeneous material:

I the reference configuration Ω is a bounded open set in Rn (n = 2 for
three-dimensional bodies),

I u and α are scalar functions defined on Ω ,
I e and p are vector functions from Ω into Rn .

R. Toader (Univ. Udine) Fracture in elasto-plastic materials December 17, 2015 1 / 10



Gradient damage models coupled with plasticity

small strain elasto-plasticity: additive decomposition ∇u = e+ p .

αmin ≤ α ≤ 1 , with αmin ∈ ]0, 1[ .
α = 1 represents the sound material;
α = αmin is the maximum possible damage;

constitutive relation: σ = αe

elastic energy: Q(e, α) := 1

2

∫
Ω

σ·e dx = 1

2

∫
Ω

α|e|2dx

stress constraint: |σ| ≤ κ(α) , κ : [0, 1]→ R is a continuous nondecreasing
function, 0 ≤ κ(0) ≤ κ(1) = 1 and κ(α) > 0 for α > 0

plastic potential: H(p, α) :=
∫
Ω

κ(α)|p|dx

energy dissipated by the damage process:

W(α) := b

∫
Ω

W(α)dx+ `

∫
Ω

|∇α|2dx

b, ` > 0 , W : [0, 1]→ R is a continuous decreasing function with W(1) = 0 .
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The minimum problem

The model proposed by Alessi, Marigo, and Vidoli is based on the
minimization of the total energy

E(e, p, α) := Q(e, α) +H(p, α) +W(α) ,

defined for e ∈ L2(Ω;Rn) , p ∈ L1(Ω;Rn) , and α ∈ H1(Ω; [αmin, 1]) ,
with the constraint e+ p = ∇u for some u ∈W1,1(Ω) satisfying prescribed
boundary conditions.
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Dependence on ε

We study the asymptotic behavior of the functional E(e, p, α) when the
minimum problem forces the damage to be concentrated along sets of
codimension one. This means that α must be close to 1 on great part of
the domain and can be close to 0 just on sets of codimension one.

To force this behavior we assume that the three constants αmin , b , `
depend on a small parameter ε > 0 in a precise way:
αmin = δε , b = 1/ε , and ` = ε , with δε/ε→ 0 as ε→ 0 .

Then E(e, p, α) becomes
Eε(e, p, α) := Q(e, α) +H(p, α) +Wε(α)

where
Q(e, α) := 1

2

∫
Ω

α|e|2dx , H(p, α) =
∫
Ω

κ(α)|p|dx , and

Wε(α) :=
1

ε

∫
Ω

W(α)dx+ ε

∫
Ω

|∇α|2dx.
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The reduced functional

We extend H to p ∈Mb(Ω;Rn) which has better compactness

properties, by setting H(p, α) :=
∫
Ω

κ(α)d|p| .

Therefore u ∈ BV(Ω) and e+ p = Du = ∇uLn +Dsu .

We consider the functional Fε(u,α) defined for u ∈ BV(Ω) and
α ∈ H1(Ω) by

Fε(u,α) := min
e,p

{Eε(e, p, α) :e∈L2(Ω;Rn), p∈Mb(Ω;Rn), e+ p=Du}

if δε ≤ α ≤ 1 and

Fε(u,α) := +∞ otherwise.

Fε represents the energy of the optimal additive decomposition of the
displacement gradient (the minimum is achieved at a unique pair (e, p)).
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The reduced functional

The functional Fε(u,α) can be written in an integral form as

Fε(u,α) :=
∫
Ω

fε(α, |∇u|)dx+
∫
Ω

κ(α)d|Dsu|+Wε(α) ,

where f(α, t) := min
0≤s≤t

{1
2
αs2 + κ(α)(t− s)

}
and

fε(α, t) := f(α, t) if δε ≤ α ≤ 1 fε(α, t) := +∞ otherwise.

The asymptotic behavior of the functionals Fε(u,α) is described by

their Γ -limit as ε→ 0 in the space L1(Ω)×L1(Ω) .

We set Fε(u,α) = +∞ if u /∈ BV(Ω) or α /∈ H1(Ω) .
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The limit problem
The limit problem is given by the functional

F(u) :=
∫
Ω

f(1, |∇u|)dx+ κ(1)|Dcu|(Ω) +

∫
Ju

Ψ(|[u]|)dHn−1 ,

defined for u in the space GBV(Ω) of generalized functions of bounded
variation, where

Ju is the jump set of u ,

[u] is the difference between the traces of u on both sides of Ju ,
|Dcu| is the Cantor part of |Du| ,

f(1, t) =


1
2t
2 if t ≤ κ(1)

κ(1)t− κ(1)2

2 if t ≥ κ(1)
for every t ≥ 0 , and

Ψ(t) := min
{
γW(0), min

0<α≤1

[
κ(α)t+ γW(α)

]}
,

with γW(α) defined by γW(α) := 4

∫ 1
α

√
W(s) ds for every α ∈ [0, 1] .
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The purely elastic problem

Under the constraint p = 0 (i.e., e = ∇u), which corresponds formally
to κ(α) = +∞ for every αmin ≤ α ≤ 1 , this problem has been studied
by Ambrosio and Tortorelli.

In this case
Fε(u,α) :=

1

2

∫
Ω

α|∇u|2dx+Wε(α) .

The limit functional is

F(u) := 1

2

∫
Ω

|∇u|2dx+ γW(0)Hn−1(Ju) ,

if u ∈ GSBV(Ω) (i.e., Dcu = 0), while F(u) = +∞ if Dcu 6= 0 .
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The fracture term
In our case F(u) :=

∫
Ω

f(1, |∇u|) dx+ κ(1)|Dcu|(Ω) +

∫
Ju

Ψ(|[u]|) dHn−1 with

Ψ(t) := min
{
γW(0),min0<α≤1

[
κ(α)t+ γW(α)

]}
for every t ≥ 0 .

0 1

γW(0)

Ψ(1)t

κ(1)t

Ψ is concave;

Ψ(1)t ≤ Ψ(t) ≤ t if t is small;

Ψ ′(0) = κ(1) ;

Ψ(t) = γW(0) if κ(0)t ≥ γW(0) ;

limt→+∞ Ψ(t) = γW(0) .
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Theorem [Dal Maso-Orlando-T. 2015]

The functionals Fε Γ -converge in L1(Ω)×L1(Ω) to the functional
F0 : L1(Ω)×L1(Ω)→ [0,+∞] defined by

F0(u,α) =

{
F(u) if u ∈ GBV(Ω) and α = 1 Ln-a.e. in Ω,

+∞ otherwise.

Moreover,

F(u) = min
e,p

{1
2

∫
Ω

|e|2 dx+ κ(1)|p|(Ω \ Ju) +

∫
Ju

Ψ(|[u]|) dHn−1
}
,

where the infimum is taken among all e ∈ L2(Ω;Rn) , p ∈Mb(Ω;Rn) such
that Du = e+ p as measures on Ω \ Ju .
Hence F can be interpreted as the total energy of an elasto-plastic material
with a cohesive fracture.

G. Dal Maso, G. Orlando, R. T.: Fracture models for elasto-plastic materials as limits of
gradient damage models coupled with plasticity: the antiplane case.
http://cvgmt.sns.it/paper/2677/
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