eNTERFACE'13

Experimental User Interfaces

Tapio Takala

Aalto University Dept. of Media Technology

http://www.cs.hut.fi/~tta/

Contents

- O Why experimental interfaces?
- Towards common methodology
- Cases from research experiments
- Trends for future

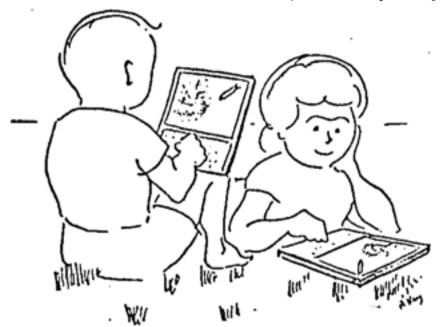
1. Why experimental UI?

- dominant design now
- gestural 2D interfaces: mouse / touch
- sensory limitations in current UI, new devices
- missing established methodology

Current dominant paradigm

Basic features

- 2D visual display + point & click device (mouse)
- direct manipulation
- hierarchical window structure
- virtual devices (widgets)
 - o menu
 - button
 - text box
 - scroll bar
- event-based control loop
 - window manager
 - device handlers
- gestural interaction techniques
 - drag & drop
 - selection by "sweeping"
 - opening by double click



WIMP = Windows - Icons - Menus - Pointers

Isn't this enough?

"A Personal Computer for Children of All Ages"

(Alan Kay's <u>Dynabook vision</u>, 1968)

using iPad today, theguardian after 40 years of development

Natural interaction is...

not just a notebook, but

- multisensory / multimodal
 - o different concurrent devices / kinds of use
 - o image, sound, video...
 - graspable / movable objects (tangible UI)
 - wearable computing
 - o smart environment watching the user
- continuous (non-discrete) control
 - o no command dialogue, but continuous flow
 - o computer may act as an initiative agent
- tied to the real environment, "physical computing"

Use of senses in current interfaces

	input (to computer)	output (display)		
sight	webcam	UI (widgets) and content		
	offline images	(text, images, video, etc.)		
hearing	speech recognition	alert signals (UI)		
	content recording	soundtracks (content)		
smell	?	?		
taste	?	?		
touch	keyboard	force feedback		
	mouse / finger	(in some game consoles)		

- very asymmetric: tactile input + visual output; sound underutilised
- exception: multimedia content (sound and images in and out)
- NOTE: the fifth "feel" sense actually covers several different senses

New input devices

- current standard devices: keyboard + mouse
 - recently being replaced by touch pad
- available but less used
 - pen/stylus, joystick, track ball
 - 3D trackers
 - o force/torque handles
 - speech recognition
- new potential
 - image capture
 - o non-speech sound
 - motion sensors (accelerometer)
 - positioning (GPS)
 - biosensors (EMG)
 - o chemical sensors, smell/taste
 - o etc.

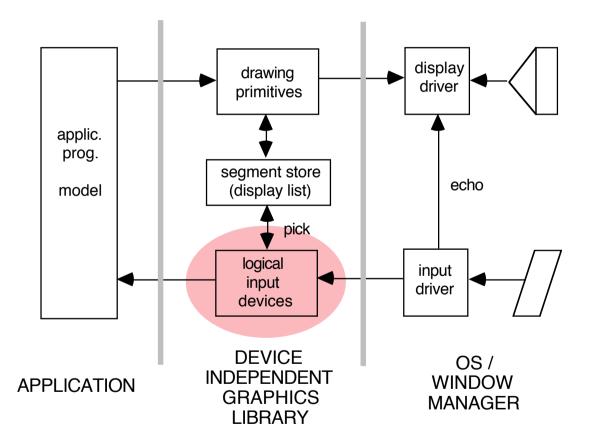
'Put That There' (Bolt 1980)

- pointing gestures
- speech commands
- large screen display
- multi-user interface

Why these still aren't standard features of a UI?

2. Towards methodology in software

- Computer graphics standardization
- Model-View-Controller framework
- Device abstractions
- A mental experiment

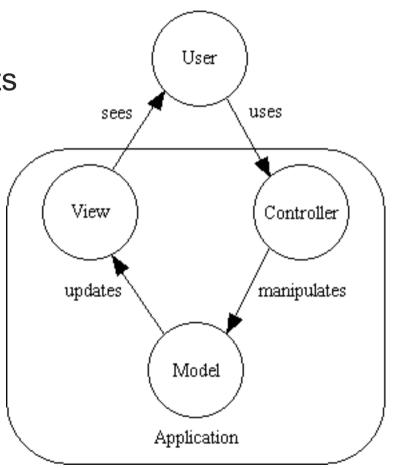

CG standardization

official: GKS (1985)

de facto: OpenGL (1992)

drawing in device independent coordinates

input part not well established


The MVC conceptualization

often used in web applications

works well with common widgets

also with hierarchical structure

- may become difficult in more general use
 - the controller may become very complex

Input device abstractions

- a useful framework for conceptualization and generalization
- what information is transferred from human to machine?
 - state or its change (on/off) → boolean
 - one from a set of alternatives → integer [enumeration]
 - o text → character [string]
 - continuous numeric value → float
 - location (2D/3D) → vector [x,y]
 - reference to a pointed object → id (name/address/number)
- may be implemented in many ways by different devices
 - switch, function key, alphanumeric key, slider, cursor on screen (indicator of mouse), drawing tablet, 3D tracker, camera, speech recognizer ...
 - Try it out: implement devices by each other ©

Exercise: fill the empty slots

Ø,	nysical device:		function Key	drawing tabl	ల్
information for the computer:	Keyboia	giider	function	drawitte	cathera
text string (char)	native	?	?	?	?
real number (float)	?	native	?	?	?
choice (one out of few alternatives)	?	?	native	?	?
2D position (x,y)	?	?	?	native	?
object picked from screen (identifier/name)	?	?	?	?	?

Conclusion (for today)

- Real life communication too complex to be standardized
 - attempts in early 80's to do the same for interaction as for graphics, with limited success
 - works for limited applications and modalities, e.g. the desktop/notebook metaphor
- However, abstractions help to keep it simpler
 - software modularity: separate data manipulation from action control, if possible
- Be ready for very different paradigms in the future

Paradigm changes in UI software

Current

- single-threaded I/O
- discrete tokens
- precise tokens
- sequence, not time
- explicit user commands

Future

- parallel, asynchronous dialogues; may be interrelated
- continuous inputs and responses (plus discrete)
- probabilistic input, not easily tokenized
- real-time requirements, deadline-based
- passive monitoring of the user

3. Sample cases

- Musical applications
- New art forms
- Motion based games
- Eyes-free interfaces

DIVA virtual orchestra

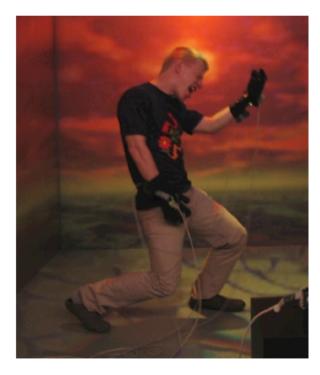
- animated musicians playing MIDI encoded music
 - automatically computed grips on the instruments
 - physically based sound synthesis
- sound reverberated according to virtual concert hall

- music conducted with a baton
 - neural networks trained to follow the motion
 - mapping from motion samples to relative timing between beats
- also recognition of conductor's emotional intent
- performance at Siggraph'97 Electric Garden

Virtual instruments

- new user interfaces for synthesized sound
- more degrees of freedom than with a keyboard

mappings to control parameters of physically based synthesis

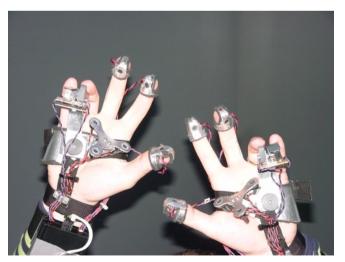

algorithms

free configurability

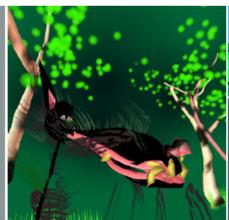
→ build your own instrument

- examples:
 - xylophone
 - drum plate
 - virtual air guitar

(became a media success and later spinned off a game company)



Drawing in the air


- Fine motoric interaction methods for immersive free-hand expression
- A new art medium
- Experiments with artists
 - exhibition at the Kiasma museum of modern art (2005)

Mäkelä, Reunanen, Takala 2004

Art installations (student work)

- Experience design
- "Tranquil interaction"

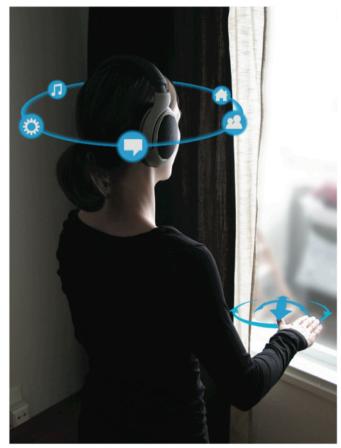
prisoned dancer

Tommi Ilmonen 2007

the village

Motion-based entertainment and games in VR

- hand gestures and sound effects
 - o virtual aquarium
 - o virtual snow fight
- camera based tracking of full body movements
 - o children's game QuiQui's Giant Bounce
 - fighting game Kick Ass Kung-Fu


Perttu Hämäläinen

Eyes-free interfaces

Raine Kajastila 2013

- gestural menu selection
- spatialized (3D) auditory display
- use cases when sight is reserved (e.g. while driving) or missing

Concept of free-hand controlled circular auditory interface

4. Current research and trends

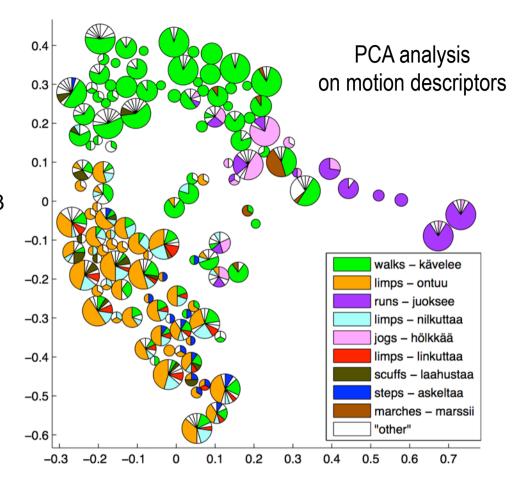
- Embodied "enactive" interfaces
- Emotions in motion
- Active virtual agents
- Excergames motion based activities
- Variability and commoditization
- Different thinking in software design

'Enactive media' as research approach

- direct and impicit human-machine communication by embodied activity, without symbolic abstractions inbetween
- aiming at natural interaction with human-like companions
 - "not using, but living with computers"
- o topics:
 - affective computing (emotions)
 - virtual agents

Meeri Mäkäräinen 1996

Interaction with captured motion


Klaus Förger et al. 2011

- analyzing activities and styles by motion descriptors
- animated responsive character programmed with behavioral rules
- may simulate virtual personalities

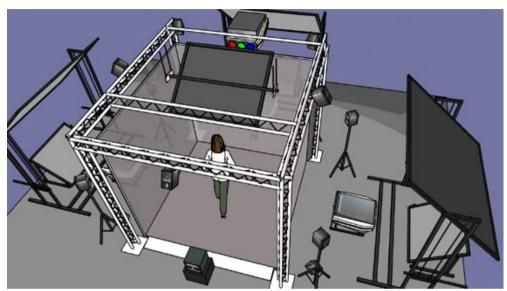
Classification and synthesis of motion

Förger 2013

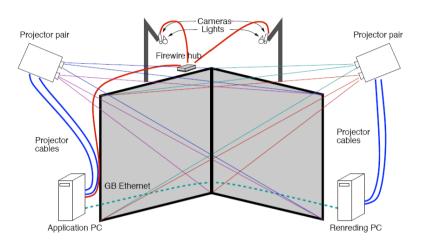
- motion samples observed and characterized by words (human)
- resynthesis by selecting samples from a data base (computer)
- goal: directing animated characters by verbal instructions

ExcerGames

- studying psychological/perceptual aspects of games
 - o what affects player's motivation to move?
- presenting captured human motion in a different context
- sample: <u>trampoline as game controller</u>



Commoditization


- basic devices getting cheaper
 - webcam
 - game consoles and controllers (Wii, PSMove, etc)
- large number of special devices available
 - sensors
 - interface hw/sw platforms (e.g. Arduino)
- development by hobbyists and open communities

From expensive VR to open platforms

Cave installation http://eve.hut.fi

a light-weight cave "Upponurkka"

RUIS platform

Cases

- RUIS (Reality-based User Interface System)
 - o open source platform for affordable VR
 - o see demo on Vimeo

- Using customer level 3DUI for designing
 - combining Blender modeling software with RUIS UI
 - o demo video: Will it Blend?

5. Final notice

- Open your mind for creativity
 - interdisciplinarity, human studies
 - art and entertainment
- Just do it be bold, but patient
 - experiment, prototype, and learn
 - "The best way to predict the future is to invent it." (Alan Kay)
- KISSS principle in interface design
 - Keep it simple and stylish, stupid

Thank you!