Multi-physics variational methods for power and magnet applications

Enric Pardo, Milan Kapolka

Francesco Grilli

Thomas Reis, Simon Wolfstaedler

Mark Ainslie, Jan Srpcic, Difan Zhou, Anthony Dennis

The third dimension can kill your model

Your formulation does not take the third dimension into account

Too time-consuming numerical method

Physical model may not be good! Force-free anisotropy in the E(J) relation

Multi-physics variational methods for power and magnet applications

Enric Pardo, Milan Kapolka

Institute of Electrical Engineering,

Slovak Academy of Siences

Multi-physics variational methods for power and magnet applications

Enric Pardo, Milan Kapolka

Francesco Grilli

Thomas Reis, Simon Wolfstaedler

Mark Ainslie, Jan Srpcic, Difan Zhou, Anthony Dennis

Acknowledgements

Horizon 2020 projects

Funded by the European Commission Grant no. 723119 and no. 721019

National projects

Non-linear eddy currents

Interaction with ferromagnetic material

Electro-thermal modelling

Non-linear eddy current problem

Non-linear eddy currents Maths Numerical method Cross-field demagnetization Force-free anisotropy

Interaction with ferromagnetic material

Electro-thermal modelling

Minimum Magnetic Entropy Production (MEMEP)

Equations

$$\mathbf{E}(\mathbf{J}) = -\frac{\Delta \mathbf{A}}{\Delta t} - \nabla \phi \qquad \text{for given } \mathbf{E}(\mathbf{J}) \text{ relation}$$
$$\nabla \cdot \mathbf{J} = 0$$

are the Euler equations of

Minimum Magnetic Entropy Production (MEMEP)

You find J by minimizing the functional

$$L = \int_{V} dV \left[\frac{1}{2} \Delta \mathbf{J} \cdot \frac{\Delta \mathbf{A}_{J}}{\Delta t} + \Delta \mathbf{J} \cdot \frac{\Delta \mathbf{A}_{a}}{\Delta t} + U(\mathbf{J}) + \mathbf{J} \cdot \mathbf{J} \right]$$
$$U(\mathbf{J}) = \int_{0}^{\mathbf{J}} d\mathbf{J}' \cdot \mathbf{E}(\mathbf{J})'$$

Cross-sectional models:

Good for voltage constrains

If you keep the current constrains, you can ignore the scalar potential

E Pardo et al. DOI: 10.1088/0953-2048/28/4/044003 E Pardo et al., HTS Modeling Workshop 2018, Caparica, Portugal

Novel 3D variational principle

M Kapolka, E Pardo DOI: 10.1016/j.jcp.2017.05.001

 $\mathbf{J} = \nabla \times \mathbf{T} \rightarrow$ effective magnetization

T is the minimization variable

$$L = \int_{V} \mathrm{d}V \left[\frac{1}{2} \Delta \mathbf{J} \cdot \frac{\Delta \mathbf{A}_{J}}{\Delta t} + \Delta \mathbf{J} \cdot \frac{\Delta \mathbf{A}_{a}}{\Delta t} + U(\mathbf{J}) \right]$$

or

$$L = \int_{V} \mathrm{d}V \left[\frac{1}{2} \Delta \mathbf{T} \cdot \frac{\Delta \mathbf{B}_{J}}{\Delta t} + \Delta \mathbf{T} \cdot \frac{\Delta \mathbf{B}_{a}}{\Delta t} + U(\nabla \times \mathbf{T}) \right]$$

You can forget about scalar potential!

Still easy to take transport currents into account

The solution is a minimum and it is unique

Because the second variation is always positive

 $\delta^2 L > 0$

$$\delta^{2} L[\Delta \mathbf{J}] = \frac{1}{2} \epsilon^{2} \int_{V} dV \int_{V} dV' \frac{\mu_{0}}{4\pi \,\Delta t} \frac{\mathbf{g}(\mathbf{r}) \cdot \mathbf{g}(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} + \frac{1}{2} \epsilon^{2} \int_{V} dV \mathbf{g}(\mathbf{r}) \overline{\overline{\rho}} (\mathbf{J}_{0} + \Delta \mathbf{J}) \mathbf{g}(\mathbf{r})$$

We made this check with all functionals!

M Kapolka, E Pardo DOI: 10.1016/j.jcp.2017.05.001

Non-linear eddy currents Maths Numerical method Cross-field demagnetization Force-free anisotropy

Interaction with ferromagnetic material

Electro-thermal modelling

Self-programmed method in C++

Advantages:

Fast and paralel No license **Expensive for super-computers** You can modify it at will Efficient for shapes with large air gaps **REBCO** coils **Stack of tapes**

Self-programmed method in C++

Disadvantages:

- Not easy post-processing
- Difficult to make complicated shapes

Dividing into sectors speeds up calculations

3D cube: benchmark 5

Frequency: 50 Hz sinusoidal Power-law exponent: 100 $J_c= 10^8 \text{ A/m}^2$

E Pardo et al. DOI: 10.1088/1361-6668/aa69ed

90% parallel efficiency in one computer

With computer clusters: more than 1 million degrees of freedom

Non-linear eddy currents Maths Numerical method Cross-field demagnetization Force-free anisotropy

Interaction with ferromagnetic material

Electro-thermal modelling

Cross-field demagnetization

Assumed constant J_c GdBCO sample prepared in Cambridge in bulk superconductivity group

Transverse field reduces space for magnetization currents

End of relaxation

Х

First cross-field peak 10th cross-field peak

Demagnetizing currents erase x-component of magnetization currents

Ζ

First cross-field peak

10th cross-field peak

Full 3D picture of demagnetizing currents

z component closes cross-field current loops

У

Calculations by MEMEP agree with FEM and measurements

Non-linear eddy currents Maths Numerical method Cross-field demagnetization Force-free anisotropy

Interaction with ferromagnetic material

Electro-thermal modelling

Flux-free effects cause anisotropic E(J)

Anisotropic power law:

$$\mathbf{E}(\mathbf{J}) = E_c \left[\frac{J_{\parallel}^2}{J_{c\parallel}^2} + \frac{J_{\perp}^2}{J_{c\perp}^2} \right]^{\frac{n-1}{2}} \cdot \left(\frac{J_{\parallel}}{J_{c\parallel}} \frac{J_{\perp}}{J_{c\parallel}} \mathbf{e}_{\parallel} + \frac{J_{\perp}}{J_{c\perp}} \mathbf{e}_{\perp} \right)$$

A Badia, C Lopez DOI: 10.1088/0953-2048/28/2/024003

Flux-free effects in thin films

Mishev et al. DOI: 10.1088/0953-2048/28/10/102001 E Pardo et al., HTS Modeling Workshop 2018, Caparica, Portugal

Usual current penetration at perpendicular field

Perpendicular applied field:

With angle, anisotropic penetration

Perpendicular applied field component:

Force-free effects increase magnetization

50 Hz sinusoidal applied field
Minimum at remanence due to perpendicular self-field

1 mHz constant ramp field

E Pardo et al., HTS Modeling Workshop 2018, Caparica, Portugal

3D modeling with finite thickness

J_c parallel: 9·10⁷ A/m²

Parallel applied field: similar to isotropic

E Pardo et al., HTS Modeling Workshop 2018, Caparica, Portugal

With angle: many new effects

3D is necessary to see details close to self-field

3D is necessary to see details close to self-field

Non-linear eddy currents

Interaction with ferromagnetic material

Electro-thermal modelling

Non-linear eddy currents

Interaction with ferromagnetic material

Coupling with FEM: motors Fully variational method Electro-thermal modelling

High-torque motor SUTOR project

Commercial Finite-Element Method

COMSOL calculates magnetic flux density or vector potential

Map from KIT

Commercial Finite-Element Method

Map from KIT

Current density and AC loss in windings

Map from IEE

Only one assumption

No interaction between magnetization currents and iron

Distance from iron of the order of tape width

Two coupling situations

Homogeneous approximation is not suitable

Uncoupled

Homogeneous approximation still possible

Fully coupled Homogeneous approximation not possible!

Coupling situation matters

E Pardo et al., HTS Modeling Workshop 2018, Caparica, Portugal

Non-linear eddy currents

Interaction with ferromagnetic material

Coupling with FEM: motors

Fully variational method

Electro-thermal modelling

3D variational principle for the magnetic material

Reversible non-linear materials

Equation

is the Euler equation of

$$L_M = \int_V dV \left[\underbrace{U(\mathbf{M})}_{V} - \frac{1}{2} \mathbf{B}_M \cdot \mathbf{M} - \mathbf{B}_a \cdot \mathbf{M} - \mathbf{B}_J \cdot \mathbf{M} \right]$$
$$U(\mathbf{M}) = \int_0^{\mathbf{M}} d\mathbf{M}' \cdot \mathbf{B}(\mathbf{M}')$$

3D variational principle for the magnetic material

$$L_M = \int_V dV \left[\underbrace{U(\mathbf{M})}_{V} - \frac{1}{2} \mathbf{B}_M \cdot \mathbf{M} - \mathbf{B}_a \cdot \mathbf{M} - \mathbf{B}_J \cdot \mathbf{M} \right]$$
$$U(\mathbf{M}) = \int_0^{\mathbf{M}} d\mathbf{M}' \cdot \mathbf{B}(\mathbf{M}')$$

Problem restricted to the magnetic material volume

Functionals for magnetic material and superconductor solved iteratively

Superconductor with non-linear magnetic substrate

Magnetic substrate saturates in part of the coil

100 turns, 50% of critical current

Non-linear eddy currents

Interaction with ferromagnetic material

Electro-thermal modelling

Non-linear eddy currents

Interaction with ferromagnetic material

Electro-thermal modelling Maths

DC fault limitting

Thermal diffusion equation

Thermal energy

Variational principle

Solving

$$\mathbf{E} \cdot \mathbf{J} = \frac{\partial U_T}{\partial T} - \nabla \cdot (\bar{\bar{k}} \nabla T)$$

is the same as minimizing

$$L_T = \int_V \mathrm{d}V \left\{ \begin{matrix} h(T) - U_T(T_0) T \end{bmatrix} \frac{1}{\Delta t} + \frac{1}{2} \nabla T \bar{k} \nabla T - T \mathbf{E} \cdot \mathbf{J} \right\}$$
$$h(T) = \int_0^T \mathrm{d}T' U_T(T') \qquad \begin{array}{l} \text{Temperature} \\ \text{at previous time step} \end{matrix}$$

Coupled electro-thermal method at given time

Non-linear eddy currents

Interaction with ferromagnetic material

Electro-thermal modelling

Maths

DC fault limitting

DC fault current limitting

2D cross-sectional model

E Pardo et al., HTS Modeling Workshop 2018, Caparica, Portugal

Superconductor limits fault current

E Pardo et al., HTS Modeling Workshop 2018, Caparica, Portugal

Initial temperature rise

E Pardo et al., HTS Modeling Workshop 2018, Caparica, Portugal

Superconductivity recovers after relatively long time

Conclusions

Multi-physics variational method

We developed the maths for several physical systems:

Non-linear eddy current problem Interaction with ferromagnetic material Electro-thermal problem

Fast parallel numerical tool

Division into sectors enables:

Faster computations

Efficient parallelization

Mixed OpenMP/MPI implementation runs in computer clusters
3D modelling shows novel effects

Cross-field demagnetization of bulks Force-free anisotropy films and bulks Thin-film approximation is not sufficient

Interaction with magnetic material

Coupling the variational method with FEM enables modeling AC loss in motors

Modeling entirely by variational methods is possible

Thank you for your attention!

Would you like to know more?

enric.pardo@savba.sk