How to Computationally Determine the Maximum Stable Operation Current of an HTS Magnet

J. Ruuskanen, A. Stenvall, V. Lahtinen, J. van Nugteren*, G. Kirby* and J. Murtomäki

Tampere University of Technology Laboratory of Electrical Energy Engineering Modelling and Superconductivity Tampere, Finland janne.ruuskanen@tut.fi CERN* Technology Department Magnets, Superconductors and Cryostats Geneva, Switzerland

AMPERE UNIVERSITY OF TECHNOLOGY

6th International Workshop on Numerical Modelling of High Temperature Superconductors

> 26 - 29 June 2018 Caparica - Portugal

Background

Introduction

- Feather-M2.1-2: One of the world's first HTS dipole magnets (2017)
- The goal was to study the performance of Roebel type HTS cable
- Designed and constructed in the framework of EUCARD2 WP10.3 at CERN
- ▶ The test results are reported in [1]

 J. van. Nugteren *et al*, "Powering of an HTS dipole insert-magnet operated standalone in helium gas between 5 and 85 K" *Supercond. Sci. Technol.* vol. 31, no. 6, 2018, Art. ID. 065002.

Background

Feather-M2 geometry

Description	Value
Magnet length	0.8 m
Total cable length	37 m
#turns in central deck	8
#turns in wing deck	4
Magnet self-inductance	166 μ H
Stored energy at 6 kA/ 3 T	2.9 kJ

Background

Roebel cable

- REBCO tapes manufactured by Sunam
- Roebel cable assembly by SuperOx

Description	Value
Number of tapes	15
Total tape length	$15{ imes}37$ m = 555 m
Width	12 mm
Thickness	1.2 mm
Insulation thickness	0.1 mm

Observation

Experimental data from the Feather-M2 test performed at CERN

• Cooling: Forced flow helium gas
$$(T_{op} = 21 \text{ K})$$

What is the critical current (I_c) of this magnet?

Vision

A need has risen:

Determine the maximum stable operation current for HTS magnets

- ▶ For LTS magnets I_c corresponds to the maximum current (high n-value)
- Feather-M2 was reported to correspond to n-values between 2.5-6
 - Current sharing inside the multi-strand cable
 - Cooling conditions
- What kind of definition for the maximum current would make more sense in case of HTS magnets than I_c?
- Essentially we want to determine the maximum stable operation current for HTS magnets

Vision

An idea: When is a magnet thermally stable?

- Intuition: Cooling is greater than heat generation over the magnet volume
- The maximum stable I_{op} can be found when cooling and heat generation are in balance
- What is needed to determine whether an operation current results in stable magnet operation or not?
 - A simulation tool that is capable of predicting thermodynamics in a system consisting of an HTS magnet and its cooling environment
 - A simulation platform equipped with a nonlinear optimization toolbox

Thermal model: Formulation

- Modelling decision: T homogeneous in the cable's cross-section
 - Heat generation in two fractions: Superconducting (sc) and normal conducting (nc)
 - The currents $I_{\rm sc}$, $I_{\rm nc}$ are solved from

$$\begin{aligned} E_{\rm sc} &= E_{\rm nc} \\ I_{\rm op} &= I_{\rm sc} + I_{\rm nc} \end{aligned}$$

Formulation of the thermal model

$$C_{\mathrm{V}}\frac{\mathrm{d}}{\mathrm{d}t}T = \frac{\mathrm{d}}{\mathrm{d}x}(\lambda \cdot \frac{\mathrm{d}}{\mathrm{d}x}T) + Q^{+} + Q^{-} + Q^{\parallel}$$

$$Q^+ = f_{\rm sc} \cdot E_{\rm sc} J_{\rm sc} + f_{\rm nc} \cdot E_{\rm nc} J_{\rm nc}$$

$$= f_{\rm sc} \cdot \underline{E}_0 \left(\frac{I_{\rm sc}}{\alpha \cdot I_{\rm c}(T,B,\theta)} \right)^n J_{\rm sc} + f_{\rm nc} \cdot \rho_{\rm nc} J_{\rm nc}^2$$

Thermal model: Cooling & Thermal coupling between the cable turns

Thermal model: Uncertainties

- Some properties of the system are unknown or challenging to measure directly
- The thermal model is parametrized for E_0 , α , n and h.
- The uncertain parameters can be determined by solving an inverse problem formulated as an optimization task

$$\min_{\underline{E_0,\alpha,n,h}} \quad \int_{t_1}^{t_2} E_{\mathrm{m}}(t) - E_{\mathrm{s}}(t) \mathrm{d}t$$

Table 1: Optimal parameters

parameter	value	unit
E_0	110	$\mu V/m$
lpha	1.8	
n	2.92	
h	86.2	${\sf W}/{\sf m}^2$

Thermal model: Comparing simulation results with the measurements

Thermal model: No cooling

Defining stable operation current

• Heat generation P in the winding volume Ω :

$$P(t) = \int_{\Omega} Q^+ \, \mathrm{d}\Omega \, [W]$$

• Cooling capacity C over the magnet surface $\partial \Omega$:

$$C(t) = \int_{\partial \Omega} Q^- \ \partial \Omega \ [W]$$

Definition

A constant operation current I, is a stable operation current iff the cooling power is greater or equal to the heat generation when $t \to \infty$, that is

$$\lim_{t \to \infty} \left(P + C \right) (t) \le 0$$

Investigating the interplay between heat generation and cooling

Finding the maximum stable operation current

- An approximation of the previous **Definition**:
 - Simulation time limit, t_0 , has a finite value
 - The time-derivative is included as a short term forecast of the power balance evolution
 - The search space is constrained by
 - 1. The time-derivative of (P+C): Equal to zero or negative
 - 2. Cooling: Greater or equal to generated heat

The maximum stable operation current can be found by solving the optimization problem

$$\max_{I} \quad I \\ \text{s.t.} \quad \frac{d}{dt} \left(P(t) + C(t) \right)_{t=t_0} \leq 0 \\ P(t_0) + C(t_0) \leq 0$$

Solution

The maximum stable operation current

For the simulation time limit of 100 s, the maximum stable operation current is 4394 A

- We demonstrated how an observation can lead to concreteness guided by a vision and creativity
- A definition for the maximum stable operation current for HTS magnet was proposed
- A methodology was presented for determining the maximum stable operation current
- Cooling is important to take into account in thermal simulations
- I_c of an HTS magnet is a somewhat arbitrary quantity