Thermal stability and mechanical behaviors in the no-insulation coil

Huadong Yong, Donghui Liu, Weiwei Zhang and Youhe Zhou

Department of Mechanics and Engineering Sciences
Lanzhou University, Lanzhou, PR China
Outline

• Motivation
• Multiphysics coupling model
• Stress and strain in NI coils
• Conclusions
Mechanical stress in coil

- **Electromagnetic force**: The coil will undergo a large electromagnetic force generated by the current and magnetic field.

- **Thermal stress**: During the quench, the change of temperature and difference of thermal expansion coefficients can lead to significant thermal stress and strain.

- **Winding stress**: For the winding process, the coil experiences the prestress or prestrain.

With the increasing of critical current, the application of superconductor may be limited by their mechanical strength!
Multiphysics coupling model

2D axisymmetric magnetic field model

Equivalent circuit axisymmetric model

1D homogenous thermal model

1D solid mechanical model

I: Azimuthal current
J: Radial current
T: Temperature
B: Magnetic field
Numerical model

Axisymmetric equivalent circuit model:

\[I_{op} \]

- \(I_{op} \): power supply current

- \(L \): self and mutual inductances

- \(R_{sc,m} \): resistance of superconducting layer of \(m \)-th turn

- \(R_{r,m} \): equivalent turn-to-turn resistance of \(m \)-th turn

- \(R_{n,m} \): resistance of normal layers of \(m \)-th turn

Axisymmetric homogenous thermal and mechanical models:

Numerical model

The governing equations of circuit model:

\[
\begin{align*}
I_{op} &= i_m + j_m \\
u_m - j_m R_{r,m} &= 0 & m < N - 1 \\
u_m + u_{m+1} - j_m R_{r,m} &= 0 & m = N - 1
\end{align*}
\]

Contact resistance and voltage in m-th turn:

\[R_{r,m} = \frac{\rho_r}{S_m}\]

\[u_m = \sum_{l=1}^{N} M_{m,l} \frac{di_l}{dt} + V_{sc,m}(i_m, I_{c,m})\]

The calculation of magnetic field:

\[
B_r = -\frac{\mu_0}{2\pi} \left(\frac{i_m}{w} \right) \int_0^w \int_0^\pi \frac{R(z-z_1)\cos \theta d\theta dz_1}{\left[r^2 + (z-z_1)^2 + R^2 + 2rR \cos \theta \right]^{3/2}}
\]

\[
B_z = \frac{\mu_0}{2\pi} \left(\frac{i_m}{w} \right) \int_0^w \int_0^\pi \frac{R(R + r \cos \theta) d\theta dz_1}{\left[r^2 + (z-z_1)^2 + R^2 + 2rR \cos \theta \right]^{3/2}}
\]

Coupling equations:

\[
\begin{align*}
E_c I_{m}\left(\frac{i_{sc,m}}{I_{c,m}} \right)^n - (i_m - i_{sc,m}) R_{n,m} &= 0 \\
V_{sc,m} &= E_c I_{m}\left(\frac{i_{sc,m}}{I_{c,m}} \right)^n \\
R_{n,m} &= \frac{\rho_n}{S_m} \\
I_{c,m} &= I_c(T_m) I_c(B_{\parallel,m}, B_{\perp,m})
\end{align*}
\]

Field-dependent critical current:

\[
I_{c,m}(B) = \frac{1}{1 + \sqrt{(kB_\parallel)^2 + B_\perp^2 / B_c}}
\]

Temperature-dependent critical current:

\[
I_c(T) = \begin{cases}
I_c \left(\frac{T_c - T}{T_c - T_0} \right) & \text{if } T < T_c \\
0 & \text{if } T \geq T_c
\end{cases}
\]

(Wang et al. SUST 2016, Chan et al. SUST 2017 and Liu et al. AIP ADV 2017)
Numerical model

- The governing equations of thermal model:

\[
\begin{align*}
\left\{ \begin{array}{l}
dC \frac{\partial T}{\partial t} + \nabla \cdot (-k \nabla T) = \rho_n(T) \left(\frac{i_m - i_{sc,m}}{S_c} \right)^2 + \rho_r \delta(r - r_j) \left(\frac{j_m}{S_k} \right)^2 + Q_{\text{heat}} \quad \text{in } \Omega \\
n \cdot (-k \nabla T) = h(T - T_0) \quad \text{on } \partial \Omega
\end{array} \right.
\end{align*}
\]

For finite difference method, the delta function can be discretized:

\[
d_{\Delta r}^{(1)} (r - r_j) = \begin{cases}
(\Delta r - |r - r_j|)/\Delta r^2, & |r - r_j| \leq \Delta r \\
0, & \text{otherwise}
\end{cases}
\]

- The governing equations of mechanical model:

\[
\begin{align*}
d \frac{\partial^2 u}{\partial t^2} &= \frac{\partial \sigma_r}{\partial r} + \frac{\sigma_r - \sigma_\varphi}{r} + J_\varphi B_z \\
u \big|_{r=0} &= 0, \quad \left. \frac{du}{dt} \right|_{t=0} = 0, \quad \sigma_r \big|_{r=r_2} = 0
\end{align*}
\]

Two different inner boundaries:

- Fixed boundary: \(u \big|_{r=r_1} = 0 \)
- Free boundary: \(\sigma_r \big|_{r=r_1} = 0 \)
The relationship of stress and strain:

\[
\varepsilon_r = \frac{\partial u}{\partial r}, \quad \varepsilon_\phi = \frac{u}{r}
\]

\[
\sigma_r = \frac{Y_m}{1-\mu^2} \left(\varepsilon_r + \mu \varepsilon_\phi \right) - \frac{Y_m \alpha \Delta T}{1-\mu}
\]

\[
\sigma_\phi = \frac{Y_m}{1-\mu^2} \left(\varepsilon_\phi + \mu \varepsilon_r \right) - \frac{Y_m \alpha \Delta T}{1-\mu}
\]

Young’s modulus: 172 GPa

Poisson’s ratio: 0.33

Thermal expansion coefficient: \(13.2 \times 10^{-6} \, \text{K}^{-1}\)

Wang et al. SUST 2016

Results

Verification of numerical model

Comparisons between experiment and simulation:

Wang et al. SUST 2015

Table I. Specification of the single-pancake (SP) NI coil.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>coil</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turn Number</td>
<td>60</td>
</tr>
<tr>
<td>Inner and outer diameters (mm)</td>
<td>100, 112</td>
</tr>
<tr>
<td>Height (mm)</td>
<td>4</td>
</tr>
<tr>
<td>Thickness of tape (mm)</td>
<td>0.1</td>
</tr>
<tr>
<td>Total length of wire (m)</td>
<td>19.9</td>
</tr>
<tr>
<td>Inductance, L_{coil} (mH)</td>
<td>0.78</td>
</tr>
<tr>
<td>B_z per amp at centre (mT)</td>
<td>0.71</td>
</tr>
<tr>
<td>Critical temperature T_c (K)</td>
<td>92</td>
</tr>
<tr>
<td>I_c coil, @ 77 K (A)</td>
<td>89</td>
</tr>
<tr>
<td>I_c tape, @ 77 K (A)</td>
<td>220</td>
</tr>
<tr>
<td>Operating current I_{op} (A)</td>
<td>60</td>
</tr>
</tbody>
</table>
Results

The distributions of temperature and current in 60-turn coil:

- The largest temperature rise happens at the location of the heater.
- The temperature of the outer turns is always lower than the critical temperature.
- The current of the inner turns only flows in the radial direction.
Results

Fixed inner boundary:

Radial strain

Hoop strain

Radial stress

Hoop stress
Results

Free inner boundary:

Radial strain

Hoop strain

Radial stress

Hoop stress
Results

The effect of the different pulsed energies:

The effect of the different inner diameters:
Results

The effect of the location of the heater:

The effect of the different contact resistivities:
Results

Large contact resistivity (\(\rho_r = 25000 \ \mu\Omega \text{ cm}^2 \)):

- The large contact resistivities can lead to increase of total contact resistances.
- The normal layers can shunt the current, and both the circumferential and radial currents exist.
Large contact resistivity \((\rho_r = 25000 \, \mu\Omega \, \text{cm}^2)\) and free inner boundary:

- **Radial strain**
- **Hoop strain**
- **Radial stress**
- **Hoop stress**
Summary

✓ The temperature rise is mainly determined by the heater.
✓ The hoop stress dominates the mechanical stability during the heat disturbance.
✓ The pulsed energy, inner diameter of the coil and the location of the heater have obvious effects on the thermal stability and mechanical behaviors.
✓ The large contact resistivity can induce quench of the entire coil, while the distributions of stress and strain are different.
Thank you for your attention!