Design of a Superconducting Magnet for Magnetic Density Separation

Jaap Kosse¹, C. Zhou¹, M. Dhallé¹, G. Tomás¹, S. Wessel¹, E. Krooshoop¹, A. den Ouden², P. Rem³,

J.Vandehoek⁴, G. Grasso⁵, T. Miller⁶, M. ter Brake¹, H. ten Kate¹

¹University of Twente, The Netherlands, ²Radboud University, The Netherlands, ³Delft University, The Netherlands, ⁴Urban Mining Corp., The Netherlands, ⁵Columbus Superconductors SpA, Italy, ⁶Sumitomo (SHI) Cryogenics Europe Ltd., United Kingdom

Magnetic Density Separation (MDS)?

Goals of the research

- NbTi demonstrator magnet
- MgB₂ prototype magnet
- Show benefits of superconductivity for MDS

Contents

- What is MDS?
- How does MDS work?
- What kind of magnet is needed?
- Cryostat
- Conclusions & outlook

Contents

- What is MDS?
- How does MDS work?
- What kind of magnet is needed?
- Cryostat
- Conclusions & outlook

How does MDS work?

At a height z_{eq} , the net force on the waste particle is zero.

$$F_{z} + F_{buoyancy} + F_{mag} = 0$$

= $(\rho_{fl} - \rho_{p})V_{p}g - \mu_{0}M_{s}\nabla|H|$

Assuming $|H|(z) = H_0 \exp(-2\pi z/\lambda)$, the stable equilibrium height depends on the mass density ρ_p as

$$z_{eq} = \frac{\lambda}{2\pi} \ln\left(\frac{2\pi\mu_0 M_s H_0}{g\lambda(\rho_p - \rho_{fl})}\right)$$

How does MDS work?

 λ determines distance between different densities

What determines λ , and how to generate $|H|(z) = H_0 \exp(-2\pi z/\lambda)$?

Contents

- What is MDS?
- How does MDS work?
- What kind of magnet is needed?
- Cryostat
- Conclusions & outlook

What kind of current distribution is needed?

MDS requires a **strong vertical gradient**, that depends only on *z*-coordinate.

Harmonic current distribution generates

$$|H|(z) = H_0 \exp\left(-\frac{2\pi}{\lambda}z\right)$$

Decay rate scales with periodicity λ of current distribution.

What kind of current distribution is needed?

MDS requires a **strong vertical gradient**, that depends only on *z*-coordinate.

Harmonic current distribution generates

$$|H|(z) = H_0 \exp\left(-\frac{2\pi}{\lambda}z\right)$$

Decay rate scales with periodicity λ of current distribution.

Approximate ideal distribution with racetracks

UNIVERSITY OF TWENTE.

Jaap Kosse, HTS2018 Modelling Workshop

More accurate approximation possible

"Conventional" MDS

• Horizontal gradient components can slow down/stop particles→minimum flow speed

• Particles need time to reach z_{eq}

Magenta lines: particle equilibrium heights

Particles will tend to follow these lines. But in the right direction?

Arrows: direction of gradient $\nabla |\mathbf{H}| / |\nabla |\mathbf{H}||$

4 coil system doesn't work!

Nor does 2 or 5... \rightarrow 3 coils it is!

- 1.36 mm NbTi wire
- 300A, ~2080 turns/coil •
- 4.5K operating temperature, 2K temperature margin •

Length 1 m

5T peak field • Requested by users for throughput

 $\lambda/2$ 30 cm

Direction of particle movement

 $\lambda = 0.6m$ requested by user: determines coil width

UNIVERSITY OF TWENTE.

Jaap Kosse, HTS2018 Modelling Workshop

 $\boldsymbol{\chi}$

Winding pack

thickness ~50 mm

• Wet winding on SS yoke

• Wet winding on SS yoke • AI5083-H321 cassette (2 parts)

- Wet winding on SS yoke
- AI5083-H321 cassette (2 parts)
- Pure AI strips for thermal function

Contents

- What is MDS?
- How does MDS work?
- What kind of magnet is needed?

Cryostat

• Conclusions & outlook

Cryostat of angled MDS magnet

Contents

- What is MDS?
- How does MDS work?
- What kind of magnet is needed?
- Cryostat
- Conclusions & outlook

Conclusion

- MDS is a recycling technology, allows separation based on mass density
- **NbTi** demonstrator magnet is starting construction phase
 - Angled, aimed at electronic waste
 - Three-coil lay-out chosen. Minimizes horizontal gradient components.
 - Conduction-cooling
 - To be installed at TU Delft
- **MgB**₂ prototype system is in material testing phase.
 - Non-angled, aimed at light plastics

Thanks for the attention

This research is part of the program Innovative Magnetic Density Separation (IMDS), which is supported by NWO domain Applied and Engineering Sciences and partly funded by the Dutch Ministry of Economic Affairs

Economic Affairs.

WO Applied and Engineering Sciences

