

Numerical Modeling for the Dynamic Characteristics of HTS Magnetic Levitation System

Wenjiao Yang¹, Tianyong Gong¹, Manuel Perez^{1,2,3}, Changing Ye¹, Loïc Quéval⁴, Gang Li¹, and Guangtong Ma^{1*}

- 1. Applied Superconductivity Laboratory, Southwest Jiaotong University, Chengdu, China
- 2. Escuela Técnica Superior de Ingeniería, Universidad de Sevilla, Spain
- 3. École Centrale de Lyon, France
- 4. Group of electrical engineering Paris (GeePs), CNRS UMR 8507, CentraleSupélec, France

2018. 06. 26 Universidade Nova de Lisboa, Portugal

Contents

- **1. Self-introduction**
- 2. Dynamic Electromagnetic-thermal Model
- 3. Results and Discussion
- 4. Conclusion

Self-introduction

D Education

Southwest Jiaotong University, Chengdu, China 2017-now State-Key laboratory of Traction Power, Department of vehicle Operation Engineering; Degree: PhD student supervisor: Guangtong Ma Southwest Jiaotong University, Chengdu, China 2016-2017 State-Key Laboratory of Traction Power, Department of vehicle Operation Engineering; Degree: Master supervisor: Guangtong Ma 2012-2016 Southwest Jiaotong University, Chengdu, China School of Mechanical Engineering, Department of vehicle engineering **Degree: Bachelor** School of Foreign Language, Department of English **Degree: Bachelor**

Main Awards

- Second Prize of 14th "Challenge Cup" National College Students' Academic Science And Technology Competition Works Competition (Province level, Design of Sterile mixer based on HTS maglev)
- Third Prize of 8th National College Students' energy conservation and emission reduction social practice and technology competition (State level)

Self-introduction

WELCOME TO CHENGDU

Universidade Nova de Lisboa Lisbon, Portugal Southwest Jiaotong University Chengdu, China

Contents

- 1. Self-introduction
- 2. Dynamic Electromagnetic-thermal Model
- 3. Results and Discussion
- 4. Conclusion

Vibration of HTS Maglev

HTS Maglev System

- Merit of self-stability
- Potential for high-speed application (i.e. Chinese project for 600km/h HTS maglev train)

Vibration of HTS maglev system

- Inevitably caused by external impulse
 - Changes of weight
 - Track irregularity

Safety Levitation performance

Motivation

Dynamic Electromagnetic-thermal Model

Electromagnetic Model

□ H-formulation

$$\nabla \times (\rho \nabla \times \mathbf{H}) = -\mu \frac{\partial H}{\partial t} \text{ in } \Omega$$

$$\rho_{sc}(|\mathbf{J}|, \mathbf{B}) = \frac{E_c}{J_c(\mathbf{B})} \left| \frac{\mathbf{J}}{J_c(\mathbf{B})} \right|^{n-1}$$

$$J_c(\mathbf{B}) = \frac{J_{c0} \cdot B_0}{1+|\mathbf{B}|}$$

Boundary conditions

- $$\begin{split} &H = H_{self}(x,y,z) + H_{ext}(x,y,z) \text{ in } \partial \Omega \\ &z = z(t) \end{split}$$
 - *H_{self}*: Biot-Savart's law
 - H_{ext} : magnetic filed of PMG
 - Numerical magnetic-field (FEM, Comsol)
 - Analytical magnetic-field

indirect coupling of HTS and magnetic field

Electromagnetic Model

Magnetic field in BC, CD, DA can be evaluated by same method, and **B** of PMG II is the sum of **B** of AB, BC, CD, and DA.

BC:

$$Bx_{2} = \int_{-(3*w1+2*w2)}^{-(w1+2*w2)} dBx_{2} \cdot dx$$

$$Bz_{2} = \int_{-(3*w1+2*w2)}^{-(w1+2*w2)} dBz_{2} \cdot dx$$
CD:

$$Bx_{3} = \int_{-(3*w1+2*w2)}^{-(w1+2*w2)} dBx_{3} \cdot dx$$

$$By_{3} = \int_{-(3*w1+2*w2)}^{-(w1+2*w2)} dBy_{3} \cdot dx$$
DA:

$$Bx_{4} = \int_{-(3*w1+2*w2)}^{-(w1+2*w2)} dBx_{4} \cdot dx$$

$$Bz_{4} = \int_{-(3*w1+2*w2)}^{-(w1+2*w2)} dBz_{4} \cdot dx$$

$$B_{IIx} = \sum_{i=1}^{4} B_{xi}$$

$$B_{IIy} = \sum_{i=1}^{4} B_{yi}$$

$$B_{IIz} = \sum_{i=1}^{4} B_{zi}$$

$$B_{II} = B_{IIx} \cdot x + B_{IIy} \cdot y + B_{IIz} \cdot z$$
And so on for other PMGS:
$$B_{total} = B_I + B_{II} + B_{III} + B_{IV} + B_V$$

Electromagnetic Model

Experimental system

QUANTITY	VALUE
Height of HTS bulk (z direction)	13[mm]
Width of HTS bulk (x direction)	32[mm]
Depth of HTS bulk (y direction)	64[mm]
Deepth of PMG (y direction)	238[mm]

Thermal Model

H-formulation with thermal effect

$$\nabla \times (\rho \nabla \times \mathbf{H}) = -\mu \frac{\partial H}{\partial t}$$

$$\rho_{sc}(|\mathbf{J}|, \mathbf{B}) = \frac{E_c}{J_c(\mathbf{B}, T)} \left| \frac{\mathbf{J}}{J_c(\mathbf{B}, T)} \right|^{n-1}$$

$$J_{c0}(T) = J_{c0} \times \frac{T_c - T}{T_c - T_0}$$

Thermal transient equation:

$$k \cdot \left(\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} + \frac{\partial^2 T}{\partial z^2}\right) - c \cdot \left(\frac{\partial T}{\partial t}\right) = -Q$$

Connective boundary condition:

 $k \cdot \left(\frac{\partial T}{\partial n}\right) + \mathbf{h} \cdot (T - T_0) = 0$

Symbol	QUANTITY	VALUE
k	Thermal conductivity [W/(m*K)]	(7.90506*1E-6*(T[K^-1])^3-2.17*1E-3*(T[K^- 1])^2+0.17407*(T[K^-1])-0.21246) [W/m/K]
С	Heat capacity [J/(m ³ *K)]	(73.75*(T[K^-1])^2+5599.78*(T[K^- 1])+87669.311)[J/m^3/K]
h	Connective heat transfer coefficient [W/(m2*K)]	400 [W/(m2*K)]
T _c	Critical temperature [K]	92 [K]
Τ ₀	Initial temperature [K]	77 [K]
Q	Joule heat [W/m ³]	/

Dynamic Model

Dynamic equations

 $F = \iiint_{a \in a} J \cdot B$ $F_{z} = \iiint_{sc} \left(J_{x} \cdot B_{y} - J_{y} \cdot B_{x} \right) d_{x} d_{y} d_{z}$ $m\ddot{z} + F_z - mg = f_y$ f_{v} : exciting force z: vertical displacement (s_vibtarion [m]) $v = \dot{z}$, vibration speed [m/s] $a = \ddot{z}$, acceleration [m/s²] Boundary condition $H = H_{self}(x, y, z) + H_{ext}(x, y, z)$

 $H = H_{self} + H_{ext}(x, y, z + s_vibration)$

Contents

- 1. Self-introduction
- 2. Dynamic Electromagnetic-thermal Model
- **3. Results and Discussion**
- 4. Conclusion

Validation of Electromagnetic Model

Sequences

- ➤ FC:(x,y,z)=((0,0,25), (0,0,6), (0,0,25))
- ➤ ZFC:(x,y,z)=((0,0,100), (0,0,6), (0,0,100))
- Velocity: 1mm/s
- ➤ mf: (x,y,z)=((-90,0,6),(90,0,6))

Symbol	QUANTITY	VALUE
М	PM Magnetization	7.8*10 ⁵ A/m
E_c	Critical current criterion	1·10 ⁻⁴ V/m
n	HTS parameter	21
J_{c0}	HTS parameter	1.8·10 ⁸ A/m ²
B_0	HTS parameter	0.2 T
$ ho_{air}$	Air resistivity	1 Ω·m [Lahtinen2012]
μ_0	Air/HTS permeability	4π ·10 ⁻⁷ H/m

Validation of Electromagnetic Model

□ Results

- Good agreements;
- Similar computing time with analytical field: 18h with numerical field: 20h

Magnetic Field

Model	Advantages	Disadvantages
with analytical field	1.Easy to build gap 2.Easy to extend halbach PMG in y direction	Long programming time and poor extendability
with numerical field	Fast implementation	 Lots of meshes and extremely fine mesh in the gap Long modeling time to extend PMG

Fz during ZFC

Fz during FC

Reference model

Thermal effect

Results

- Same levitation force during field cooling;
- Same trend during vibration, but different amplitude;
- Enormous difference in computing time: 6days for model without thermal effect; 11days for the model including it

Fz during vibration

Relaxation

Results

- Figure of model after 120s relaxation is moved forward parallel to t-axis
- Fz decay during relaxation;
- Little changes to nature frequency
- Almost same amplitude during vibration;
- Less time to get back to the stable regime

Vertical displacement during vibration

Fz during relaxation

Fz during vibration

30

Content

1. Self-introduction

2. Dynamic Electromagnetic-thermal Model

3. Results and Discussion

4. Conclusion

Conclusion

Electromagnetic model with numerical / analytical field

- Good agreement, similar computing time
- Analytical field is more suitable for modeling of long Halbach guideway- avoid large amount of meshes and extremely fine mesh in the gap
- **Dynamic model with thermal effect**
 - Extendable for further research
 - Safe to study dynamic characteristic with dynamic model without thermal effect
 - Relaxation will be helpful for dynamic stability of HTS maglev system
 - Challenge: long computation time

Acknowledgments

Main collaborators:

Tianyong Gong (Master) Manuel Perez (Master) Changing Ye (Post Doctor) Loïc Quéval (Assistant professor) Guangtong Ma (Professor)

Foundations:

This work was supported in part by the National Natural Science Foundation of China, in part by the Sichuan Youth Science and Technology Foundation, in part by the State Key Laboratory of Traction Power, and in part by the Fundamental Research Funds for the Central Universities.

THANKS FOR YOUR ATTENTION

motor_yang@163.com