Numerical Modeling for the Dynamic Characteristics of HTS Magnetic Levitation System

Wenjiao Yang¹, Tianyong Gong¹, Manuel Perez¹,²,³, Changing Ye¹, Loïc Quéval⁴, Gang Li¹, and Guangtong Ma¹*

1. Applied Superconductivity Laboratory, Southwest Jiaotong University, Chengdu, China
2. Escuela Técnica Superior de Ingeniería, Universidad de Sevilla, Spain
3. École Centrale de Lyon, France
4. Group of electrical engineering - Paris (GeePs), CNRS UMR 8507, CentraleSupélec, France

2018. 06. 26
Universidade Nova de Lisboa, Portugal
1. Self-introduction
2. Dynamic Electromagnetic-thermal Model
3. Results and Discussion
4. Conclusion
Self-introduction

Education

- **Southwest Jiaotong University, Chengdu, China** 2017-now
 State-Key laboratory of Traction Power, Department of vehicle Operation Engineering;
 Degree: PhD student
 supervisor: Guangtong Ma

- **Southwest Jiaotong University, Chengdu, China** 2016-2017
 State-Key Laboratory of Traction Power, Department of vehicle Operation Engineering;
 Degree: Master
 supervisor: Guangtong Ma

- **Southwest Jiaotong University, Chengdu, China** 2012-2016
 School of Mechanical Engineering, Department of vehicle engineering
 Degree: Bachelor
 School of Foreign Language, Department of English
 Degree: Bachelor

Main Awards

- Second Prize of 14th "Challenge Cup" National College Students' Academic Science And Technology Competition Works Competition (Province level, Design of Sterile mixer based on HTS maglev)

- Third Prize of 8th National College Students' energy conservation and emission reduction social practice and technology competition (State level)
Self-introduction

WELCOME TO CHENGDU

Universidade Nova de Lisboa
Lisbon, Portugal

Southwest Jiaotong University
Chengdu, China
Contents

1. Self-introduction
2. Dynamic Electromagnetic-thermal Model
3. Results and Discussion
4. Conclusion
Vibration of HTS Maglev

- **HTS Maglev System**
 - Merit of self-stability
 - Potential for high-speed application (i.e. Chinese project for 600km/h HTS maglev train)

- **Vibration of HTS maglev system**
 - Inevitably caused by external impulse
 - Changes of weight
 - Track irregularity
 - ...

- Safety
 - Levitation performance
Motivation

Dynamic Electromagnetic-thermal Model

1. Electromagnetic Model
2. Thermal Model
3. Dynamic Model
Electromagnetic Model

- **H-formulation**

 \[\nabla \times (\rho \nabla \times H) = -\mu \frac{\partial H}{\partial t} \text{ in } \Omega \]

 \[\rho_{sc}(|J|, B) = \frac{E_c}{J_c(B)} \left| \frac{J}{J_c(B)} \right|^{n-1} \]

 \[J_c(B) = \frac{J_{co} \cdot B_0}{1 + |B|} \]

- **Boundary conditions**

 \[H = H_{self}(x, y, z) + H_{ext}(x, y, z) \text{ in } \partial \Omega \]

 \[z = z(t) \]

 - **H_{self}:** Biot-Savart’s law
 - **H_{ext}:** magnetic field of PMG
 - Numerical magnetic-field (FEM, Comsol)
 - Analytical magnetic-field

 indirect coupling of HTS and magnetic field
Electromagnetic Model

- **Analytical magnetic-field**
 - Biot-Savart’s law: e.g. for AB in PMG II

\[
\begin{align*}
\mathbf{dB} &= \frac{\mu_0}{4\pi} \frac{I d\mathbf{l} \times \mathbf{r}}{r^2} \\
\mathbf{M} &= M \mathbf{x} \\
\mathbf{J} &= M \times \mathbf{n} = M \mathbf{z} \\
I &= M dx \\
\mathbf{d}\mathbf{l} &= d\mathbf{z}', |r|^2 = (x - x')^2 + (y + l)^2 + (z - z')^2
\end{align*}
\]

\[
\begin{align*}
\mathbf{dB}_x_1 &= \frac{\mu_0 M}{4\pi} \cdot dx' \cdot \int_0^{-tpm} -\frac{y+l}{3} \cdot dz' ; \\
\mathbf{B}_x_1 &= \int_{-(w1+2*w2)}^{-(w1+2*w2)} dB_x_1 \cdot dx \\
\mathbf{dB}_y_1 &= \frac{\mu_0 M}{4\pi} \cdot dx' \cdot \int_0^{-tpm} \frac{x-x'}{3} \cdot dz' ; \\
\mathbf{B}_y_1 &= \int_{-(3*w1+2*w2)}^{-(3*w1+2*w2)} dB_y_1 \cdot dx \\
\mathbf{dB}_z_1 &= 0
\end{align*}
\]
Electromagnetic Model

Magnetic field in BC, CD, DA can be evaluated by same method, and \(B \) of PMG II is the sum of \(B \) of AB, BC, CD, and DA.

BC:
\[
B_{x2} = \int_{-(w1+2*\text{w2})}^{-(w1+2*\text{w2})} dB_{x2} \cdot dx
\]
\[
B_{z2} = \int_{-(3*w1+2*\text{w2})}^{-(w1+2*\text{w2})} dB_{z2} \cdot dx
\]

CD:
\[
B_{x3} = \int_{-(w1+2*\text{w2})}^{-(3*w1+2*\text{w2})} dB_{x3} \cdot dx
\]
\[
B_{y3} = \int_{-(3*w1+2*\text{w2})}^{-(w1+2*\text{w2})} dB_{y3} \cdot dx
\]

DA:
\[
B_{x4} = \int_{-(w1+2*\text{w2})}^{-(3*w1+2*\text{w2})} dB_{x4} \cdot dx
\]
\[
B_{z4} = \int_{-(3*w1+2*\text{w2})}^{-(w1+2*\text{w2})} dB_{z4} \cdot dx
\]

\[
B_{\text{IIx}} = \sum_{i=1}^{4} B_{xi}
\]
\[
B_{\text{IIy}} = \sum_{i=1}^{4} B_{yi}
\]
\[
B_{\text{IIz}} = \sum_{i=1}^{4} B_{zi}
\]
\[
B_{\text{II}} = B_{\text{IIx}} \cdot x + B_{\text{IIy}} \cdot y + B_{\text{IIz}} \cdot z
\]

And so on for other PMGS:
\[
B_{\text{total}} = B_{I} + B_{\text{II}} + B_{\text{III}} + B_{IV} + B_{V}
\]
Electromagnetic Model

- Experimental system

<table>
<thead>
<tr>
<th>QUANTITY</th>
<th>VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Height of HTS bulk (z direction)</td>
<td>13[mm]</td>
</tr>
<tr>
<td>Width of HTS bulk (x direction)</td>
<td>32[mm]</td>
</tr>
<tr>
<td>Depth of HTS bulk (y direction)</td>
<td>64[mm]</td>
</tr>
<tr>
<td>Depth of PMG (y direction)</td>
<td>238[mm]</td>
</tr>
</tbody>
</table>
H-formulation with thermal effect

\[\nabla \times (\rho \nabla \times \mathbf{H}) = -\mu \frac{\partial \mathbf{H}}{\partial t} \]

\[\rho_{sc}(|\mathbf{J}|, \mathbf{B}) = \frac{E_c}{J_c(\mathbf{B}, T)} \left| \frac{\mathbf{J}}{J_c(\mathbf{B}, T)} \right|^{n-1} \]

\[J_{c0}(T) = J_{c0} \times \frac{T_c - T}{T_c - T_0} \]

Thermal transient equation:

\[k \left(\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} + \frac{\partial^2 T}{\partial z^2} \right) - c \cdot \left(\frac{\partial T}{\partial t} \right) = -Q \]

Connective boundary condition:

\[k \cdot \left(\frac{\partial T}{\partial n} \right) + h \cdot (T - T_0) = 0 \]

<table>
<thead>
<tr>
<th>Symbol</th>
<th>QUANTITY</th>
<th>VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>k</td>
<td>Thermal conductivity [W/(m*K)]</td>
<td>(7.905061E-6(T[K^-1])^3-2.171E-3(T[K^-1])^2+0.17407*(T[K^-1])-0.21246) [W/m/K]</td>
</tr>
<tr>
<td>c</td>
<td>Heat capacity [J/(m^3*K)]</td>
<td>(73.75*(T[K^-1])^2+5599.78*(T[K^-1])-0.21246) [J/m^3/K]</td>
</tr>
<tr>
<td>h</td>
<td>Connective heat transfer coefficient [W/(m^2*K)]</td>
<td>400 [W/(m^2*K)]</td>
</tr>
<tr>
<td>T_c</td>
<td>Critical temperature [K]</td>
<td>92 [K]</td>
</tr>
<tr>
<td>T_0</td>
<td>Initial temperature [K]</td>
<td>77 [K]</td>
</tr>
<tr>
<td>Q</td>
<td>Joule heat [W/m^3]</td>
<td>/</td>
</tr>
</tbody>
</table>
Dynamic Model

- **Dynamic equations**

\[
F = \iiint_{SC} J \cdot B \\
F_z = \iiint_{SC} (J_x \cdot B_y - J_y \cdot B_x) \, dx \, dy \, dz \\
m\ddot{z} + F_z - mg = f_y \\
f_y: \text{exciting force} \\
z: \text{vertical displacement (s_vibration [m])} \\
v = \dot{z}, \text{vibration speed [m/s]} \\
a = \ddot{z}, \text{acceleration [m/s}^2]\]

- **Boundary condition**

\[
H = H_{self}(x, y, z) + H_{ext}(x, y, z) \\
H = H_{self} + H_{ext}(x, y, z + s_vibration)
\]
1. Self-introduction
2. Dynamic Electromagnetic-thermal Model
3. Results and Discussion
4. Conclusion
Validation of Electromagnetic Model

Sequences

- FC: \((x, y, z) = ((0, 0, 25), (0, 0, 6), (0, 0, 25))\)
- ZFC: \((x, y, z) = ((0, 0, 100), (0, 0, 6), (0, 0, 100))\)
- Velocity: 1 mm/s
- mf: \((x, y, z) = ((-90, 0, 6), (90, 0, 6))\)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Quantity</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(M)</td>
<td>PM Magnetization</td>
<td>(7.8 \times 10^5) A/m</td>
</tr>
<tr>
<td>(E_c)</td>
<td>Critical current criterion</td>
<td>(1 \times 10^{-4}) V/m</td>
</tr>
<tr>
<td>(n)</td>
<td>HTS parameter</td>
<td>21</td>
</tr>
<tr>
<td>(J_{c0})</td>
<td>HTS parameter</td>
<td>(1.8 \times 10^8) A/m²</td>
</tr>
<tr>
<td>(B_0)</td>
<td>HTS parameter</td>
<td>0.2 T</td>
</tr>
<tr>
<td>(\rho_{air})</td>
<td>Air resistivity</td>
<td>(1\ \Omega\cdot m) [Lahtinen2012]</td>
</tr>
<tr>
<td>(\mu_0)</td>
<td>Air/HTS permeability</td>
<td>(4\pi \times 10^{-7}) H/m</td>
</tr>
</tbody>
</table>
Validation of Electromagnetic Model

- **Results**
 - Good agreements;
 - Similar computing time

 with analytical field: 18h
 with numerical field: 20h

<table>
<thead>
<tr>
<th>Model</th>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
</table>
| with analytical field | 1. Easy to build gap
2. Easy to extend halbach PMG in y direction | Long programming time and poor extendability |
| with numerical field | Fast implementation | 1. Lots of meshes and extremely fine mesh in the gap
2. Long modeling time to extend PMG |

- **Magnetic Field**
- **Fz during ZFC**
- **Fz during FC**
Reference model

- to reduce computing time
- Same parameters with electromagnetic model \(m = 1\, kg \)
- Studied case: free vibration after field cooling

\[\text{FC: } (x, y, z) = ((0, 0, 30), (0, 0, 10)) \]
Thermal effect

Results

- Same levitation force during field cooling;
- Same trend during vibration, but different amplitude;
- Enormous difference in computing time: 6 days for model without thermal effect; 11 days for the model including it.
Results

- Figure of model after 120s relaxation is moved forward parallel to t-axis
- Fz decay during relaxation;
- Little changes to nature frequency
- Almost same amplitude during vibration;
- Less time to get back to the stable regime
1. Self-introduction
2. Dynamic Electromagnetic-thermal Model
3. Results and Discussion
4. Conclusion
Conclusion

- Electromagnetic model with numerical / analytical field
 - Good agreement, similar computing time
 - Analytical field is more suitable for modeling of long Halbach guideway- avoid large amount of meshes and extremely fine mesh in the gap

- Dynamic model with thermal effect
 - Extendable for further research
 - Safe to study dynamic characteristic with dynamic model without thermal effect
 - Relaxation will be helpful for dynamic stability of HTS maglev system
 - Challenge: long computation time
Main collaborators:
Tianyong Gong (Master)
Manuel Perez (Master)
Changing Ye (Post Doctor)
Loïc Quéval (Assistant professor)
Guangtong Ma (Professor)

Foundations:
This work was supported in part by the National Natural Science Foundation of China, in part by the Sichuan Youth Science and Technology Foundation, in part by the State Key Laboratory of Traction Power, and in part by the Fundamental Research Funds for the Central Universities.
THANKS FOR YOUR ATTENTION

motor_yang@163.com