

Study of a Cylindrical Geometry Design for the ZFC-Magley System

Francisco Silva & P.J. Costa Branco

francisco.ferreira.silva@tecnico.ulisboa.pt; pbranco@tecnico.ulisboa.pt

MOTIVATION

Rectangular ZFC-Maglev Prototype

Problem: Lateral Stability

Lateral forces vs. lateral displacement

Possible Solution: Change the

What if it is used a cylindrical geometry?

CONCEPT OF THE NEW CYLINDRICAL ZFC-MAGLEV

Design Concept

Magnetic Rail

Geometric Description

Manufacturing Constraints

Too expensive to create a prototype! Detailed Simulations, first!

SIMULATIONS OF THE CYLINDRICAL GEOMETRY

Magnetic Field Formulation is used with E-J Power Law: Values used for

Values used for YBCO Bulks*

Variables	Values
E_0	$1 \cdot 10^{-4} \text{ Vm}^{-1}$
n	30
B_0	0.1 T
J_{C0}	$1.82 \cdot 10^8 \text{ Am}^{-2}$

H. Serieiro. *Utilização de materiais supercondutores no circuito magnético de geradores eléctricos adaptados a fontes de energia renováveis.* Master's thesis, Instituto Superior Técnico, Universidade de Lisboa, 2015. Master's Advisors: J. Fernandes, P.J. da Costa Branco

Finite Element Analysis using

COMSOL Multiphysics

Finite Element Analysis using COMSOL Multiphysics

• Time dependent study:

Step function

3D Simulations Geometry and Mesh Configuration

TÉCNICO LISBOA

3D Simulations

⊿ ∾ Study 1				
netric Sweep				
1: Time Dependent				
Sweep type: All combinations				
hh				
Parameter value list				
range(5,5,30)				
range(16,4,40)				

TÉCNICO LISBOA

3D Simulations Discrete PM Rail

⊿ 👓 Study 1				
Parametric Sweep				
Ĭ,	Step 1: Time Dependent			
Sweep type:	AI	l combinations		
Parameter	nam	Parameter value list		
Rair	•	range(5,5,30)		
D	•	range(16,4,40)		
d_PM	•	5,10,15		

Discrete PM Rail Results

3D Simulations Moving Along the Rail

⊿ \infty Study 1					
123	Parametric Sweep				
📐 Step 1: Time Dependent					
Sweep type:	All combinations				
** Parameter	nam	Parameter value list			
Rair	•	5			
D	•	range(16,4,40)			
d_PM	•	5,10,15			
v move	•	range(0,1,19)			

Moving Along the Rail Results

3D Simulations Lateral and Downward Movement

TÉCNICO LISBOA

Sweep type:	A	l combinations
** Parameter	nam	Parameter value list
x_move	•	range(-5,0,5)
z_move	•	range(0,-1,5)

Lateral and Downward Movement Results

22

LATERAL FORCE COMPARISON

Lateral Force Comparison

CONCLUSIONS

• A study of a new cylindrical geometry were made, regarding the levitation and lateral forces;

• A comparison between the rectangular and cylindrical geometry is made regarding the lateral forces;

 There is a strong indication that the Cylindrical Geometry has better lateral stability than the Rectangular Geometry;

 Make a study with a moving mesh to check the dynamics of the car while moving across the magnetic rail;

• Develop a prototype to validate the simulations;

 Check the influence of the flux pinning in the lateral dynamics;

This work was supported by FCT, through IDMEC, under LAETA, project UID/EMS/50022/2013

Thank you!

