Electromagnetic Lumped Parameter Model of HTS Bulks in Magnetic circuits

João Fernandes & Paulo Branco
Joao.f.p.fernandes@tecnico.ulisboa.pt; pbranco@tecnico.ulisboa.pt
Motivation

• New High Temperature Superconductors (HTS):
 – Cooling of HTS became more cheap and accessible (more research):
 • Renew interest in design and optimization of new electrical machines with HTS bulks incorporated;

HTS Horizontal Levitation Bearing for High Speed Motors

In loco HTS Bulk Magnetization
When design an Electrical Machine with HTS bulks incorporated...

- Requires multiple physics and complex geometries
- HTS bulk physics -> non-linear models

• Simulations:
 - 3D: several days / 2D: several hours.
 - If using a multi-objective optimization tools (100 elements and 100 generations) it can take up to several months and years of simulation!

Analytical Models are still important! Is it possible to obtain a Lumped Parameter Model (LPM) for the HTS bulk with enough accuracy?
LPM requires an analytical solution!

\[\nabla \times \vec{H} = \vec{j} \]

\[\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t} \]

\[\vec{E} = E_0 \left(\frac{\vec{j}}{J_c} \right)^n \]

\[J_c = \frac{k}{(B_0 + |B(t)|)} \]

No feasible analytical solution!
D.X. Chen and R.B. Goldfarb (1989) obtained a simplified analytical model:

\[J = J_c \]

\[\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t} \]

\[\nabla \times \vec{H} = \vec{J} \]

\[\vec{J}_c = \frac{k}{(B_0 + |B(t)|)} \]

It has an analytical solution!

(although, not sensible to \(\frac{\partial \vec{B}}{\partial t} \))
HTS Modelling: $J = J_c + \text{Kim Model}$

- Solution for an axisymmetric 2D problem:

\[\nabla \times \vec{H} = \vec{J} \]

\[J_c = \frac{k}{(H_0 + |H(t)|)} \]

\[\frac{dH_{sc}}{dr} = -J_c = \frac{-\text{sgn}(J_{sc})k}{(H_0 + |H_p(t)|)} \]

\[H_{sc} = -\text{sgn}(H_p)H_0 \pm \sqrt{H_0^2 - \text{sgn}(J_{sc}H_p)2k(r + c)} \]

\[J_{sc} = -\text{sgn}(J_{sc})k/\sqrt{H_0^2 - \text{sgn}(J_{sc}H_p)2k(r + c)} \]
HTS Modelling: $J = J_c + \text{Kim Model}$

\[r_0(t) = a - \frac{[(H_0 + H_p)^2 - H_o^2]}{2k} \]

\[r_1(t) = a - \frac{[(H_0 + H_m)^2 - (H_0 + H_p)]}{4k} \]
J=Jc + Kim Model: Accuracy

\[J = J_c + \text{Kim Model} \]

\[J_c = \frac{J_{c_0}}{(B_0 + |B(t)|)} \]

FEA 2D Simulation

\[\nabla \times \vec{H} = \vec{j} \]

\[\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t} \]

\[\vec{E} = E_0 \left(\frac{\vec{j}}{J_{c_0}} \right)^n \]

GdBCO

\[J_{c_0} = 1.8 \times 10^8 \text{ A/m}^2 \]

\[n = 30 \]

\[E_0 = 1 \times 10^{-4} \text{ V/m} \]

\[B_0 = 1 \text{ T} \]
J=Jc + Kim Model: \textbf{Accuracy\\\\

B_p = 1.5T \quad | \quad \tau (time to peak) = variable

<table>
<thead>
<tr>
<th>τ</th>
<th>Error B_{av}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 ms</td>
<td>18,9%</td>
</tr>
<tr>
<td>5 ms</td>
<td>15,8%</td>
</tr>
<tr>
<td>10 ms</td>
<td>14,5%</td>
</tr>
<tr>
<td>50 ms</td>
<td>11,6%</td>
</tr>
<tr>
<td>100 ms</td>
<td>10,3%</td>
</tr>
</tbody>
</table>

\textbf{GdBCO}
Lumped Parameter Model
Lumped Parameter Model

- \(J = J_c + \text{Kim model} \)

\[
\begin{align*}
H_{sc} &= -\text{sgn}(H_p) H_0 \pm \sqrt{[H_0^2 - \text{sgn}(J_{sc} H_p) 2k(r + c)]} \\
J_{sc} &= -\text{sgn}(J_{sc}) k / \sqrt{[H_0^2 - \text{sgn}(J_{sc} H_p) 2k(r + c)]} \\
r_0 &= a - [(H_0 + H_p)^2 - H_0^2]/2k \\
r_1 &= a - [(H_0 + H_m)^2 - (H_0 + H_i)]/4k
\end{align*}
\]

- Representation by average values.
- Information about induced currents
Lumped Parameter Model

\[\frac{dH_p}{dt} > 0 \]

\[H_{sc} = \begin{cases}
\int_{r_0}^{a} J_{sc0}(r) dr & 0 < r < r_0 \\
\int_{r}^{a} J_{sc0}(r) dr & r_0 < r < a
\end{cases} \]

\[r_0 = a - \frac{[(H_0 + H_p)^2 - H_0^2]}{2k} \]

\[H_{scav} = \frac{1}{a} \int_{0}^{a} H_{sc}(r) dr = \left[-\sqrt{(H_0 + H_p)^2} + \sqrt{(H_0 + H_p)^2 - 2k(a - r_0)} \right] \frac{r_0}{a} + \left[-\sqrt{(H_0 + H_p)^2 (a - r_0)} + \frac{[(H_0 + H_p)^2]^{3/2} - [(H_0 + H_p)^2 - 2k(a - r_0)]^{3/2}}{3k} \right] \frac{1}{a} \]
Lumped Parameter Model

\[
\frac{dH_p}{dt} < 0
\]

\[
H_{sc} = \begin{cases}
\int_{r_0}^{r_1} J_{sc0}(r)dr + \int_{r_1}^{a} J_{sc1}(r)dr & r < r_0 \\
\int_{r}^{r_1} J_{sc0}(r)dr + \int_{r_1}^{a} J_{sc1}(r)dr & r_0 < r < r_1 \\
\int_{r}^{a} J_{sc1}(r)dr & r_1 < r < a \end{cases}
\]

\[
H_{scav} = \frac{1}{a} \int_{0}^{a} H_{sc}(r) \, dr
\]

\[
r_0 = a - [(H_0 + H_p)^2 - H_0^2]/2k
\]

\[
r_1 = a - [(H_0 + H_m)^2 - (H_0 + H_p)]/4k
\]
Lumped Parameter Model

Φ_{sc} – Magnetic flux (H_{scav} as function of H_p)

R_{sc} - Magnetic reluctance ($\mu_r = 1$)

HTS keeps trying to maintain its magnetic field unchanged by using superconductor currents.

“Inspired” in LPM of permanent magnets.

Has information about the HTS currents -> Power losses
HTS Levitation Circuit

HTS (3.3x2.5x1.4 cm)

PM (2.5x2.5x1 cm)
HTS Levitation Circuit

PM + HTS bulk

PM only

HTS only

\[\mu = \mu_0 \]

\[\phi_{\text{g}} \]

\[\phi_{\text{m}} \]

\[\phi_{\text{d}} \]

\[\phi_{\text{l}} \]

\[\phi_{\text{sc}} \]

\[\phi_{\text{c}} \]

11/08/2018

Instituto Superior Técnico
HTS Levitation Circuit

1) **Air instead of HTS**: Distribution of flux due to **only PM**;
HTS Levitation Circuit

\[\Phi_{sc} = R_{sc} \]

\[\mu = \mu_0 \]

\[\phi_g \]

\[\phi_m \]

\[\phi_{lv} \]

\[\phi_{lh} \]

\[\phi_{sc} \]

\[B_{\text{air}} \]

\[B_{s_{sc}} \] (YBCO)

\[B_{s_{sc}} \] (GdBCO)

\[\text{gap [mm]} \]
HTS Levitation Circuit

3) HTS Levitation Circuit

- Diagram of the HTS Levitation Circuit with various components labeled.
- Graph showing the relationship between gap [mm] and magnetic field strength B_{sc} [T] for different cases:
 - No SC
 - $Jc0 + \text{Kim}$
 - $\mu_r = 0$

- Another graph illustrating the force F_z [N] as a function of gap [mm] for:
 - LPM ($\mu_r = 0$)
 - 2D FEA ($\mu_r = 0$)
 - 2D FEA YBCO
 - LPM YBCO ϕ_{sc}

(J = $Jc + \text{Kim}$ model)
Multi-Objective Optimization of the HTS and PM (Generic Algorithms):

- Maximize levitation force;
- Minimize materials required.

V=60 cm³

\[1.4\text{ cm} \quad 3.3\text{ cm} \quad \text{HTS}\]

\[1.2\text{ cm} \quad 2.5\text{ cm} \quad \text{PM} \quad \text{PM}\]

V=36 cm³

\[1.0\text{ cm} \quad 3.2\text{ cm} \quad \text{HTS}\]

\[1.0\text{ cm} \quad 2.0\text{ cm} \quad \text{PM} \quad \text{PM}\]

V=54 cm³

\[4.0\text{ cm} \quad 1.0\text{ cm} \quad \text{HTS}\]

\[1.7\text{ cm} \quad \text{PM} \quad \text{PM}\]

\[2.0\text{ cm} \quad \text{PM}\]
Multi-Objective Optimization of the HTS and PM (Generic Algorithms):

- Maximize levitation force
- Minimize materials required

Computation of Power Losses

<table>
<thead>
<tr>
<th>V (cm³)</th>
<th>PM</th>
<th>HTS</th>
<th>PM</th>
</tr>
</thead>
<tbody>
<tr>
<td>60</td>
<td>3.3</td>
<td>1.4</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>2.5</td>
<td></td>
</tr>
</tbody>
</table>

Optimized:

<table>
<thead>
<tr>
<th>V (cm³)</th>
<th>PM</th>
<th>HTS</th>
<th>PM</th>
</tr>
</thead>
<tbody>
<tr>
<td>36</td>
<td>3.2</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.0</td>
<td>1.0</td>
<td></td>
</tr>
</tbody>
</table>

Computation of Power Losses

\[P_J = 9 \text{mW} \]
\[P_J = 6.4 \text{mW} \]
\[P_J = 6.4 \text{mW} \]
Conclusions

1. HTS electromagnetic lumped parameter model (LPM) can be done using Kim model and $J = J_c$;

2. It outperforms simple models as $\mu_r = 0$.

3. Can be used in optimization algorithms for electrical machines predesign.

4. Can be used to study the power losses inside the HTS bulk.
This work was supported by FCT, through IDMEC, under Project PTDC/EEI-EEL/4693/2014 and acknowledgement to FCT, through IDMEC, under LAETA, project UID/EMS/50022/2013.

Thank you
Lumped Parameter Model

- Other simplified LPM used in the pre-design of magnetic circuits:

\[\mu_r = 0 \quad \mu_r = 0.2 \]

No information about induced currents!
HTS Modelling: $J = J_c + \text{Kim Model}$
Lumped Parameter Model

\[\frac{dH_p}{dt} < 0 \]

\[r_1 = a - \frac{[(H_0 + H_m)^2 - (H_0 + H_p)]}{4k} \]

\[H_{scav} = \frac{1}{a} \left[\sqrt{(H_0 + H_m)^2 - 2k(a - r_0)} - \sqrt{(H_0 + H_m)^2 - 2k(a - r_1)} + \sqrt{(H_0 + H_p)^2 - 2k(a - r_1)} - \sqrt{(H_0 + H_p)^2} \right] r_0 \]

\[\frac{3k}{a} \left[\left(\frac{(H_0 + H_m)^2 - 2k(a - r_1)}{3k} \right)^{3/2} - \left(\frac{(H_0 + H_m)^2 - 2k(a - r_0)}{3k} \right)^{3/2} \right] + \frac{r_1 - r_0}{a} - \frac{(a - r_1)}{a} + \frac{1}{a} \left[\left(\frac{(H_0 + H_p)^2}{3k} \right)^{3/2} + \left(\frac{(H_0 + H_p)^2 - 2k(a - r_1)}{3k} \right)^{3/2} \right] \]
J=Jc + Kim Model: Accuracy
HTS Levitation Circuit
J=Jc + Kim Model: Accuracy

<table>
<thead>
<tr>
<th>τ (ms)</th>
<th>Error B_{av}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>18,9%</td>
</tr>
<tr>
<td>5</td>
<td>15,8%</td>
</tr>
<tr>
<td>10</td>
<td>14,5%</td>
</tr>
<tr>
<td>50</td>
<td>11,6%</td>
</tr>
<tr>
<td>100</td>
<td>10,3%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>B/τ</th>
<th>Error B_{av}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1T / 1 ms</td>
<td>10,78%</td>
</tr>
<tr>
<td>1.5T / 15 ms</td>
<td>13,77%</td>
</tr>
<tr>
<td>2T / 20 ms</td>
<td>14,08%</td>
</tr>
<tr>
<td>2.5T / 25 ms</td>
<td>12,81%</td>
</tr>
</tbody>
</table>