

Electromagnetic Lumped Parameter Model of HTS Bulks in Magnetic circuits

João Fernandes & Paulo Branco

Joao.f.p.fernandes@tecnico.ulisboa.pt; pbranco@tecnico.ulisboa.pt

11/08/2018

Motivation

- New High Temperature Superconductors (HTS):
 - Cooling of HTS became more cheap and accessible (more research):
 - Renew interest in design and optimization of new electrical machines with HTS bulks incorporated;

HTS Horizontal Levitation Bearing for High Speed Motors

In loco HTS Bulk Magnetization

Motivation

When design an Electrical Machine with HTS bulks incorporated...

- Requires multiple physics and complex geometries
- HTS bulk physics -> non-linear models
- Simulations:
 - 3D: several days / 2D: several hours.
 - If using a multi-objective optimization tools (100 elements and 100 generations) it can take up to several months and years of simulation!

Analytical Models are still important! Is it possible to obtain a Lumped Parameter Model (LPM) for the HTS bulk with enough accuracy?

HTS Modelling

• LPM requires an analytical solution!

HTS Modelling

• D.X. Chen and R.B. Goldfarb (1989) obtained a simplified analytical model:

Solution for an aviewmmetric 2D problem:

ISBOA HTS Modelling: _____ Kim Model

J=Jc + Kim Model: Accuracy

Lumped Parameter Model

Lumped Parameter Model

• <u>J=Jc + Kim model</u>

$$H_{sc} = -\operatorname{sgn}(H_p) H_0 \pm \sqrt{[H_0^2 - \operatorname{sgn}(J_{sc}H_p) 2k(r+c)]}$$

$$J_{sc} = -\operatorname{sgn}(J_{sc})k / \sqrt{[H_0^2 - \operatorname{sgn}(J_{sc}H_p) 2k(r+c)]}$$

$$r_0 = a - [(H_0 + H_p)^2 - H_0^2]/2k$$

$$r_1 = a - [(H_0 + H_m)^2 - (H_0 + H_i)]/4k$$

Representation by average values.

Information about induced currents

11/08/2018

Lumped Parameter Model

 $\frac{dH_p}{dt} < 0$

Lumped Parameter Model

 Φ sc – Magnetic flux ($H_{sc_{av}}$ as function of H_p) Rsc - Magnetic reluctance ($\mu_r = 1$)

HTS keeps trying to maintain its magnetic field unchanged by using superconductor currents.

"Inspired" in LPM of permanent magnets.

Has information about the HTS currents -> Power losses

A. J. Arsénio, et al, "Prototype of a Zero-Field-Cooled YBCO Bearing With Continuous Ring Permanent Magnets," in *IEEE Transactions on Applied Superconductivity*, vol. 28, no. 4, pp. 1-7, June 2018.

Current On-Going Work

Current On-Going Work

11/08/2018

Instituto Superior Técnico

Conclusions

- 1. HTS electromagnetic lumped parameter model (LPM) can be done using Kim model and J=Jc;
- 2. It outperforms simple models as $\mu_r = 0$.
- 3. Can be used in optimization algorithms for electrical machines predesign.
- 4. Can be used to study the power losses inside the HTS bulk.

This work was supported by FCT, through IDMEC, under Project PTDC/EEI-EEL/4693/2014 and acknowledgement to FCT, through IDMEC, under LAETA, project UID/EMS/50022/2013.

Thank you

• Other simplified LPM used in the pre-design of magnetic circuits:

No information about induced currents!

J=Jc + Kim Model: Accuracy

J=Jc + Kim Model: Accuracy

τ	Error B _{av}
1 ms	18,9%
5 ms	15,8%
10 ms	14,5%
50 ms	11,6%
100 ms	10,3%

Β/τ	Error B _{av}
1T / 1 ms	10,78%
1.5T / 15 ms	13,77%
2T /20 ms	14,08%
2.5T / 25 ms	12,81%