

Institute for Technical Physics (ITEP)

Karlsruhe Institute of Technology

Comparison of 2D simulation models to estimate critical current of a superconducting coil

Y. Liu¹, J. Ou¹, <u>F. Grilli¹</u>, F. Schreiner¹, V. M. R. Zermeno¹, M. Zhang², M. Noe¹

¹ Karlsruhe Institute of Technology, Germany ² University of Strathclyde, United Kingdom

expected critical current of the tape at that field [5]

Experiment

Coil specification

Critical current of the SC coil $\times 10^{-3}$ Criterion: 0.1 μ V/cm ▲ Cond-meas. Critical current LN₂-meas. Voltage (V) N b b - Cond-fit 43.2 A by LN_2 _LN₂-fit. 42.3 A by cond. - Criterion

Таре	GdBaCuO
Tape thickness/width	0.22/4 mm
Min. tape I _c (77 K,s.f.)	100 A
Number of turns	244
Inner/outer radius of the coil	45/83 mm
Height of the coil	19 mm
Height of copper plate	2 mm
Total length of the tapes	218 m

Possible reasons to the deviation

- Simulations use a fixed *n*-value, while in reality nvalue changes with the magnetic field
- Uniformity of the tape I_c along length (± 20%)
- Length uniformity of the angular dependence of the superconductor (0.3%-6.7%)
- Manufacturing process of the superconducting coil

Magnetic field distribution at operation current of 51 A and n-value of 30 (below critical current with criterion 1 μ V/cm)

$0.1 \mu\text{V/cm}$	14.9%	15.1%	15.6%	10.0%
1 <i>µ</i> V/cm	18.1%	18.4%	15.8%	11.4%

Max. deviation of estimated I_c compared to Cond-meas.

Due to above mentioned reasons, the coil has a lower lc than expected based on the short sample measurement.

Conclusion	Cor	lOC	US	ION	
------------	-----	-----	----	-----	--

H-formulation	T-A formulation	<i>P</i> -model	Load-line method
Applied to all types of SC wires/tapes			Applied to all types of SC wires/tapes
Computation slow	Computation fast	Computation fast	Computation fast

The load-line method gives better result to experiment, not because it explains what happens in the superconductor, but because uniform current density assumption gives lower I_c estimation. If ideal tapes are used, the other three models could give better results

References

[1] Roberto Brambilla et al 2007 Supercond. Sci. Technol. 20 16 [2] Z. Hong et al 2006 Supercond. Sci. Technol. 19 1246 [3] Fei Liang et al 2017 Journal of Applied Physics **122**, 043903 [4] V. Zermeño et al 2015 Supercond. Sci. Technol. 28 085004 [5] M. N. Wilson 1987 Superconducting Magnets (Monographs on Cryogenics) (Oxford: Oxford University Press) p 352

This work was supported by German Research Foundation under Grant NO 935/1-1, and the National Natural Science Foundation of China under Grant 51761135120.

