Modeling high temperature superconducting magnetics with an open source finite element library

S. Shiraiwa, J. C. Wright, D. White¹, M. Stowell¹, and T. Kolev¹ PSFC, MIT, LLNL¹

6th International Workshop on Numerical Modeling of High Temperature Super Conductors

26-29 June 2018, Caparica-Portugal

Commonwealth Fusion System (CFS)

- CFS is an MIT spinout with the goal of developing high-field HTS magnets for fusion energy and other applications.
- CFS is sponsoring research at MIT to develop the magnet technology.
- Part of this work includes developing numerical models to predict magnet performance, which will be validated against small-scale test magnets.
- Many parallels between simulating magnetized plasmas and superconducting magnets.

Leading-class computing facilities allow for accurate RF wave physics simulations in core and edge regions with great detail

•These simulation models compute RF wave propagation and absorption including linear and non-linear effects using variety of numerical schemes

- Spectral code simulations of core LH and IC waves
- FDTD (finite difference time domain) simulation of ICRF antenna on C-Mod

FEM has been used to handle complicated geometry, multi-physics/code integration

- (right) FEM solution in edge is coupled with the core spectral solver solution
- (bottom) LH wave propagation near the antenna including
 - Ponderomotive force acting on plasma
 - Modification of n_e

Petra-M is developed on the MFEM library and applied to various RF wave problems in fusion plasmas

- Scalable MFEM library
- <u>http://mfem.org/features</u>

- Petra-M physics
 based FEM modeling interface
- Workflow management using πScope
 - <u>http://piscope.psfc.mit.edu</u>

Petra-M was also coupled with the TORIC core spectral solver

- ICRF wave antenna propagation in the Alcator C-Mod tokamak
- Petra-M solves the RF field propagation in cold plasma near the antenna in 3D geometry
- TORIC solves the RF field propagation in hot core region

Petra-M: <u>Physics Equation Translator</u> for <u>MFEM</u>

MFEM

Free, lightweight, scalable C++ library for finite element methods. Supports arbitrary high order discretizations and meshes for a wide variety of applications.

Lawrence Livermore National Laboratory

Flexible discretizations on unstructured grids

- Triangular, quadrilateral, tetrahedral and hexahedral meshes.
- Local conforming and non-conforming refinement.
- High-order mesh optimization (ASCR Base).
- Bilinear/linear forms for variety of methods: Galerkin, DG, DPG, ...

High-order methods and scalability

- Arbitrary-order H1, H(curl), H(div)- and L2 elements. Arbitrary order curvilinear meshes.
- MPI scalable to millions of cores. Enables application development on wide variety of platforms: from laptops to exascale machines.

Solvers and preconditioners

- Integrated with: HYPRE, SUNDIALS, PETSc, SUPERLU, ...
- Auxiliary-space AMG preconditioners for full de Rham complex
- Open-source software
 - Open-source (GitHub) with thousands of downloads/year worldwide
 - Part of FASTMath, ECP/CEED, xSDK, OpenHPC, ...

http://mfem.org

MFEM provides building blocks to developing FEM application

39 a.AddDomainIntegrator(mfem.VectorFEMassIntegrator(sigma));

Solve

- 40 static_cond = False
- 41 if (static_cond): a.EnableStaticCondensation()
- 42 a.Assemble();
- 43 A = mfem.SparseMatrix()
- 44 B = mfem.Vector()
- 45 X = mfem.Vector()
- 46 a.FormLinearSystem(ess_tdof_list, x, b, A, X, B);
- 47 ## Here, original version calls hegith, which is not
- 48 ## defined in the header...!?
- 49 print("Size of linear system: " + str(A.Size()))
- 50 M = mfem.GSSmoother(A)
- 51 mfem.PCG(A, M, B, X, 1, 500, 1e-12, 0.0);
- 52 a.RecoverFEMSolution(X, b, x)
- 53 print("|| E_h E ||_{L^2} = " + str(x.ComputeL2Error(E)))
 54

$$\nabla \times \nabla \times E + E = f$$
$$\downarrow$$
$$\mathsf{M} \mathbf{x} = \mathbf{b}$$

In a short ~60 lines, it does...

- Define Finite Element Function Space
- Matrix Assembly/Solve

Changes required for parallelize the code is small.

PyMFEM (MFEM Python-binding) is developed for rapid development

- Allows for construct, manipulate MFEM c++ objects
- Supports both parallel (with MPI) and serial (w/o MPI) MFEM
- Allows for defining FunctionCoefficient using python class
- (Partial) Supports passing numpy array as argument and return value

(C++)

```
double data[] = \{1, 2, 3\};
```

o = Vector (data, 3);

(python)

v = mfem.Vector(np.array([1,2,3.]))

 Create HypreParCSR/HypreVector using distributed scipy.sparse matrix

Search or jump to	Pull requests	Issues Marketplace Expl	ore 🦹 + 🗸 💹 -
🛱 mfem / PyMFEM		O Unwatch → 7	* Unstar 7 Fork 5
↔ Code ① Issues 0	ກ Pull requests 0 🛛 🏢 F	Projects 0 🖷 Wiki 📊 Ir	sights 🖕 Settings
Python wrapper for MFEM (generated from mfem 3.4	release) http://mfem.org	Edit
fem scientific-compu	ting python swig	Manage topics	
© 182 commits	۶ 2 branches	\bigcirc 2 releases	# 1 contributor
Branch: master - New p	oull request Create new	w file Upload files Find fil	e Clone or download -
😸 sshiraiwa Update READ	DME	Latest co	nmit 80022a5 3 days ago
Makefile_templates	minor change in setup.	ру	5 months ago
🖿 data	added ex8p, copied me	esh files from mfem3.3 (used	from ex a year ago
🖿 examples	update ex18p.py		3 days ago
🖿 mfem	regenerate wrapper co	de using 3.4.0	6 days ago
🖿 test	updated ex10p to follow	w the update in c++ example	and up 3 months ago
a.gitignore	add more test program	S	5 months ago
	update license files		a year ago
ChangeLog	update ChangeLog and	INSTALL	3 months ago
	update ChangeLog and	INSTALL	3 months ago
	verion 3.3.0, being plac	ed in mfem main repository	a year ago
Makefile	minor upate of Makefile	9	2 months ago
	Update README		3 days ago
a _config.yml	Set theme jekyll-theme	e-merlot	a year ago
clean_import.py	error.i, point.i and segn	nent.i	4 months ago
■ setup.py	3.3.2 ex1, ex1p works	needs more test.	7 months ago
<pre>write_setup_local.py</pre>	commit message		2 years ago

```
.....
```

PyMFEM

built on mfem 3.4 (commit 0715efbaf95990a4e76380ac69337096b1cd347d)

PyMFEM is a python2.7 wrapper for MFEM, ligith-weight FEM (finite element method) library developed by LLNL (http://mfem.org). This wrapper is meant for a rapid-prototyping of FEM program, and

is built using SWIG 3.0.12

With PyMFEM, a user can create c++ MFEM objects and call their method from python. We strongly recommend to visit the MFEM web site to find more detail of the MFEM libirary.

Availale from GitHub (LGPL)

Petra-M uses Python for rapid physics module development, while using scalable FEM and solver libraries

Model setup interface is built on π Scope

- πScope
 - All-in-one style python data analysis environment
 - Shell
 - Editor
 - Debugger
 - Project management
 - Data Browser
 - Interactive plotting environment
 - Based on matplotlib + custom GUIs to edit figure
 - OpenGL based 3D graphics
 - Native support to browse MDSplus data system
 - Components to support code integration
 - Open Source (GNUv3)

🤨 proj	
<pre>> is setting > book1</pre>	<pre>1 import numpy as np 2 wr = proj.cql3d_rfnc.get_contents("variables","wr") 4 wz = proj.cql3d_rfnc.get_contents("variables","wr") 5 wphi = proj.cql3d_rfnc.get_contents("variables","wphi") 6 delpwr = proj.cql3d_rfnc.get_contents("variables","delpwr") 7 idx = [14, 43, 72, 101] 9 to x = wr[idx, :100]"np.cso(xphi[idx,:100])/100 11 y = wr[idx, :100]"np.sin(xphi[idx,:100])/100 12 z = wz[idx, :100] 14 b xlim = proj.gfile.get_contents("table","xlim") 16 ylim = proj.gfile.get_contents("table","xlim") 16 ylim = proj.gfile.get_contents("table","xlim") 17 yplasma = proj.gfile.get_contents("table","zbbbs") 18 yplasma = proj.gfile.get_contents("table","zbbbs") 19 Welcome to piScope (dev) 9 ython 2.7.11 (default, Mor 1 2016, 18:40:10) 17 (copyright", "credits" or "license" for more information. 19 Startup Script executed: /Users/shiraiwa/piscope_beta02/python/ifigure 20 Startup.py 20 Startup Startup file /Users/shiraiwa/pythonstartup.py 20 Startup Startup file /Users/shiraiwa/pythonstartup.py 20 Startup.py 20 Startup Startup file /Users/shiraiwa/pythonstartup.py 20 Startup.py 20 Startup Startup file /Users/shiraiwa/pythonstartup.py 20 Startup Startup Startup file /Users/shiraiwa/pythonstartup.py 20 Startup Startup Startup file /Users/shiraiwa/pythonstartup.py 20 Startup Star</pre>
header ' FEITD 'str'	
zanid **data** 'numpy ndar (129.)	
agrad (125,)	
	10

			u 🔢 🧐		👪 👪 😪 d) 🚯 🔕 🛅	🧠 Applicatio	ns Places Syst	tem Fri N	4ay 26, 1:56 PM 🛛 🔹 🚓	: 🖉
		piScope:test4_3d_2_fina	al.pfz*		×	[-	proj.book4(fram	e 0)	_ □	×	
	File Edit View Plot Help					File Edit View Plo	t Help)(
	Project Tree	< load_nc_file.py	couple_toric_comsol.py r	make_movie.py toric_mfem_ns.p	y 🗶 💙 💙	PA 🖪 🕀 🕀 49	愛愛深 88 14 18 18 18 18 18 18 18 18 18 18 18 18 18	artist	axes page	J	
	▼ axes1 (L:0.00 B:0.00 W:1.00 H:	1.00) 205 re	turn P*sin(ph)**2*s	sin(th)**2 - S*sin(ph)*	*2*sin ^	dot(E, e	eta):[10, 11]	text box			
	▲ face_1	206 207 @varia	ble.arrav(complex :	= True, shape=(3,3))				text			
shir	▲ face_2	208 ⊝def ep	<pre>silonr_pl(x, y, z);</pre>								
	▲ face_3	209 Br 210 Bn	<pre>, Bz, Bt = Bfield(x orm = sart(Br**2+B)</pre>	<, y, z) z**2+Rt**2)				size	~		
	av face_4	210	51m - 54rt(5r 2752	2,00 27		- III 🥿 🍯				=	
	▲ face_6	212 # 213 By	- B7					color 📃			
	▲ face_7	213 By	= -Bt						?		
	× 🖻 🌓 proem.mfembook.page1.axe	s1 1 215 Bx	= Br					font ser	rif 🗸 🗸		
		210 III	= np.array([Bx, By	<pre>Bz]).reshape(3,1)</pre>				weight ult	ralight		
	Tree Variables Shell Variables Console History	218 nh	i = xyz2nhi(x. y. z	7)					•		
	=	Expression				z 🕂 x 🕊		style no	rmal 🗸		
	value type	shape e >>>)	canvas size = (331, 35	56)				
	kywds {} 'dict'	>>>					proi.book2(frame	25)		×	
		>>>				File Edit View Plo	t Help	,			
		>>>				PA 🥆 🔍 🗣 👪 🚱	Avge Avge 🔀 🗈 🗈 🖬 🖬 🖻	artist	axes page		
		>>>						Common V	<u> </u>		
		>			=		and the second se		y z t t t t t s		
								label		_	
				🧱 🕦 5 proc /	2 MB				Style		
proje	🗖 mfembook:proj.model2.mfem.mfe 💶 🗆 🗙		Model Tree	EM922 . 1	×				auto margi	r	
	File Edit View Plot MFEM Help	General(NS:globa Config.	Selection					range -0.6	int	. =	
opped tex	●▲★●★●★●★●★	▶ Mesh						0.6	🗹 sym		
		✓ Phys epsilonr ✓ EM3D1(NS:toric	* Array Form 🗸					linear	~		
		✓ Domain =epsil	onr_pl					scale 10.0		-	
		Vac1						1.0	1.0	ge 1) _ 🗆 x	
		Div1 mur*	Elemental Form 🗸							elp	
		Anisotropic 1.0	0.0	0.0			plot		×	P 🔀 🗈 🌃 🚮	
		Anisotropi	1.0	0.0		GeomBdr Edge Bo	fr Bdr(arrow) Slice Con	fig	66, 67, 68, 6	9, 70, 71, 72, 73, 74, 75	
		PEC1 0.0	0.0	1.0		Expression					
		SurfJ1][][=					_ \		
		SurfJ2 Continuitu	Elemental Form 🗸			Expression(x)					
		H1				Edge all				X I	
		PMC1 0.0	0.0	0.0		Physics Phys.	EM3D1				
		E1 0.0	0.0	0.0		dynamic extractio	n				
		♦ Solver	0.0	0.0							
						 merge solutions 			:e = (292, 26	j1)	
						Export		Ap	oply		
	sniraiwa@cmodws86:~ 📗 piScope:test4_3d_2_f	book3:proj.book3(pag	proj.book4(frame 0)	proj.book2(frame 25)	[proj.bool	K14(Trame 📑 mfe	mbook:proj.model	юок2			, LLL

Material properties in Petra-M

- Material property can be defined by using a Python function + decorator
 - A Python decorator specifies the type (float/complex) and shape of returned value
 - Supports Spatial dependence.
 - MFEM calls this function with the special coordinates at quadrature integration points.
 - Can use a value from a solution from the previous solve step.

	Config.	Selection	Init/NL.	Time Dep.	
paired	variable	u (WF1)			~
test sp	ace (Rows)	u			~
coeff.	type	Diagonal			~
lambda	a(*)	=kai			
integra	ator 🖊	DiffusionIn	tegrator		~
make s	symmetric				
use co	onjugate				

```
1 import numpy as np
2 from petram.helper.variables import variable
3 
4 @variable.array(complex=False, shape=(3,))
5 @def kai(x, y, z):
6 return np.array([1., 0.1, 0.1])
7
```

Mesh extension and DoF projection/mapping

- We often need to handle the coupling of PDEs defined over geometrically different regions
 - (Example) RF propagation in waveguide (RF) and heating of waveguide (heat)
- Petra-M generates automatically daughter meshes.
 - Daughter meshes inherit domain/boundary attributes for the mother mesh.
 - DoF mapping operator (can be either projection or linear solve.)
 - Works for H1/ND/RT elements.
 - Supports arbitrary polynomial order.
 - Supports a curved mesh.

RF wave field in induced on the metal wall of antenna box. Perpendicular electrci field on the surface, generated by mapping 3D RF fied

RF module (frequency domain Maxwell prob.)

$$\nabla \times (\mu^{-1} \nabla \times \boldsymbol{E}) - (\omega^2 \epsilon - j \omega \sigma) \boldsymbol{E} = -j \omega \boldsymbol{J}^s \text{ in } S,$$
$$\hat{\boldsymbol{n}} \times \boldsymbol{E} = \boldsymbol{P} \text{ on } L_1,$$
$$\hat{\boldsymbol{n}} \times (\mu^{-1} \nabla \times \boldsymbol{E}) + \gamma \, \hat{\boldsymbol{n}} \times \hat{\boldsymbol{n}} \times \boldsymbol{E} = \boldsymbol{Q} \text{ on } L_2.$$

Weak form

Maxwell eq.

$$\int_{S} \left[\mu^{-1} \left(\nabla \times \boldsymbol{W}_{i} \right) \cdot \left(\nabla \times \boldsymbol{E} \right) - \left(\omega^{2} \boldsymbol{\epsilon} - j \omega \sigma \right) \boldsymbol{W}_{i} \cdot \boldsymbol{E} \right] dS$$
$$+ \int_{L_{2}} \boldsymbol{W}_{i} \cdot \left(\boldsymbol{Q} - \gamma \, \hat{\boldsymbol{n}} \times \hat{\boldsymbol{n}} \times \boldsymbol{E} \right) \, dl = -j \omega \int_{S} \boldsymbol{W}_{i} \cdot \boldsymbol{J}^{s} dS.$$

- Domain
 - Uniform dielectric media
 - Anisotropic (matrix) media
 - External J
 - DivJ constraints in vacuum
- Boundary
 - Perfect electric conductor (E_t=0)
 - Perfect magnetic conductor (B_t=0)
 - Waveguide port (TE, TEM modes)
 - Periodic boundary
 - Surface current/Magnetic field/Electric field

	Model Tree		
General(NS:global) Mesh		Config. Sel	ection
MeshFile1 UniformRefinement1	epsilon_r Arra	y Form 🔽	
Phys	=epsilonr_pl(x,	y, z)	
EM3D1(NS:tokamak_plasma)			
Domain	mu r Element:	Eorm	
Anisotropic1	ind_i Liementa		
Vac1	1.0	0.0	0.0
Boundary	0.0	10	0.0
Port1	0.0	1.0	0.0
Port2	0.0	0.0	1.0
PEC1			
Continuity	sigma Elemen	tal Form 🔽	
▼ Pall			
	0.005	0.0	0.0
MUMPS1	0.0	0.005	0.0
	0.0	0.0	0.005

WF (weak form) module

- Used to construct an FEM model by specifying MFEM integrators (right)
- Can be coupled with other physics simulation model to define multi-physics coupling.

Init/NL. Config Selection Time Dep. paired variable A (WF2) test space (Rows) В See http://mfem.org/bilininteg/ and coeff. type Scalar http://mfem.org/lininteg/ for the full list lambda(*) 1 integrator **MixedVectorCurlIntegrator** use src proj. use dst proj. **MixedVectorCurlIntegrator** make symmetric use conjugate

IFEM Features Examples Documentation - Gallery Download

Scalar Field Operators

These operators require scalar-valued trial spaces. Many of these operators will work with either H1 or L2 basis functions but some that require a gradient operator should be used with H1.

Square Operators

These integrators are designed to be used with the BilinearForm object to assemble square linear operators.

Class Name	Spaces	Coef.	Operator	Continuous Op.	Dimension
MassIntegrator	H1, L2	S	$(\lambda u, v)$	λu	1D, 2D, 3D
DiffusionIntegrator	H1	S, M	$(\lambda \nabla u, \nabla v)$	$-\nabla \cdot (\lambda \nabla u)$	1D, 2D, 3D

Mixed Operators

These integrators are designed to be used with the MixedBilinearForm object to assemble square or rectangular linear operators.

Class Name	Domain	Range	Coef.	Operator	Continuous Op.	Dimension
MixedScalarMassIntegrator	H1, L2	H1, L2	S	$(\lambda u, v)$	λи	1D, 2D, 3D
MixedScalarWeakDivergenceIntegrator	H1, L2	H1	v	$(-\vec{\lambda}u, \nabla v)$	$\nabla\cdot(\vec{\lambda}u)$	2D, 3D
MixedScalarWeakDerivativeIntegrator	H1, L2	H1	S	$(-\lambda u, \frac{dv}{dx})$	$\frac{d}{dx}(\lambda u)$	1D
MixedScalarWeakCurlIntegrator	H1, L2	ND	S	$(\lambda u,\nabla\times\vec{v})$	$\nabla\times(\lambdau\hat{z})$	2D
MixedVectorProductIntegrator	H1, L2	ND, RT	v	$(\vec{\lambda}u, \vec{v})$	$\vec{\lambda}u$	2D, 3D
${\sf MixedScalarWeakCrossProductIntegrator}$	H1, L2	ND,	v	$(\vec{\lambda} u\hat{z},\vec{v})$	$\vec{\lambda} \times \hat{z} u$	2D

GUI allows to pick an MFEM integrator from menu

Solver

- Petra-M supports variety of linear solvers through MFEM library
- Linear Solvers
 - Direct solver:
 - MUMPS/Strumpack.
 - Iterative solver:
 - Krylov subspace solvers from Hypre (CG, MINRES, GMRES, FGMRES, BiCGSTAB...)
 - Block preconditioner GUI
- A user can construct a solution sequence, which is made from multiple linearsolve/time dependent solver runs.

GMRES	<u>~</u>
log_level	1
max iter.	200
rel. tol	1e-07
abs. tol.	1e-07
restart(kdim)	50
🗸 advanced mode	
preconditioner D	

3 @pi	rc.blk_diagonal
4 ⊝de	f D(p, g, *args, **kwargs):
5	GSgen.set_param(g, "v")
6	gs = GSgen()
7	k = g.get_row_by_name("v")
8	<pre>p.SetDiagonalBlock(k, gs) # set to block</pre>
9 (return p

Custom preconditioner can be defined using a Python decorator

Petra-M runs on a laptop, but also allows for submitting a job to a cluster

😑 😑 mfembook:proj.model1.mf	em.mfembook(page ')					
🖡 🔊 😟 🚸 📇 🖓 🗽 🖓	P 🖂 🔀 👘 🐻	1					
Q5 96	x 97 98 99 10	9.4		Model data files			
General(NS:global)	Model Tree	Config Color	ation			- CLUAR	0000
▼ Mesh		Sornig. Selec	cuon				00000
MeshFile1	epsilon_r Array Fo	orm 🔽			CO POP		CLEARLES -
UniformRefinement1							CIATE CONTRACTOR
Phys FNOD1(NO to locate allocate)	=epsilonr_pl(x, y, z)					Contraction of the second s
EM3D1(NS:tokamak_plasma) Domain Anisotropic1	mu_r Elemental F	orm 🔽					
Vac1	1.0	0.0	0.0	1		and a substants	
▼ Boundary Port1	0.0	1.0	0.0			Carlos Carlos	
Port2	0.0	0.0	1.0	Solutions/Processed data		Contraction of the second second	
PEC1				,			
Continuity1	sigma Elemental	orm					and the state of the
▼ Pair						and the second	and the second second
Ficquet1 ▼ Solver	0.005	0.0	0.0				and the second s
MUMPS1	0.0	0.005	0.0			100 - Constant P	And Andrews
	0.0	0.0	0.005			March 19	
canv						State of the local division of the	And the second s
							And and a state of the state of

- User frontend is used define a simulation mode using physics interface.
- Simulation model is "preprocessed" to make input files
 - Resolve boundary index
 - Analyze geometry data
- Input files are Python scripts, allowing for modifying the model on a server before running.

HTS modeling efforts

Goal: adopt a framework for simulating RF in plasmas to static and dynamic HTS magnet systems

- Many commonality between HTS and waves in plasmas
 - Highly anisotropic and non-linear material properties
 - Complex geometry
 - Maxwell's equations and heat transport
 - FEM Libraries demonstrated to run a large scale clusters
 - GUI sets supporting, multi-physics modeling
- Challenge
 - HTS tape is extremely thin compared to the size of magnet.
 - HTS exhibits strongly anisotropic and non-linear material property.

$$\nabla \times \left(\frac{1}{\mu} \nabla \times \vec{A}\right) = \overleftarrow{\sigma} (T, \vec{B}, \vec{J}) \vec{E}$$

$$\nabla(\overleftrightarrow{\sigma}\vec{E}) = 0, \nabla\cdot\vec{A} = 0$$

$$\vec{E} = -\frac{d\vec{A}}{dt} - \nabla\phi, \ \vec{B} = \nabla \times A$$

$$ho C_p rac{dT}{dt} -
abla \overleftrightarrow{k}
abla T = q$$
 , where $q = ec{E} \cdot ec{J}$

Approach - Hierarchy of models

- Microscopic to Macroscopic properties
 - Investigate how stacks of tapes with different internal materials manifest thermal and electrical conductivity. See eg [Noguchi 2016 TAS]
 - This model to minimize peak voltages and heating
- Continuous media approximation
 - Circular cross section double pancake geometry
 - Tape not explicit in geometry.
 - Anisotropic electric conductivity
 - Rotate conductivity tensor to align with 'tape' position locally
 - Tape is on a spiral with finite pitch so there is a radial component
 - Uniform thermal conductivity from copper matrix

MMONWEALTH

Summary

- Petra-M framework is being developed
 - Based on the scalable MFEM finite element library.
 - Developed originally to solve the frequency domain Maxwell problem in order to model RF propagation in a cold plasma.
 - Extended to run more complicated multi-physics type simulations.
- Application to HTS tape based magnet modeling has started, aiming towards,
 - Quench propagation analysis.
 - Magnet performance Analysis in whole tokamak device scale.

