

Energy-Harvesting Applications http://localenergy.lneg.pt/

SYNTHESIS AND CHARACTERIZATION OF Cu_{12-x-v}Zn_xFe_vSb₄S_{13-z} TETRAHEDRITES

F. Neves¹, L. Esperto¹, I. Figueira¹, J. Mascarenhas¹, J. B. Correia¹, H. Ferreira², E.B. Lopes², A.P. Gonçalves²

¹LNEG, Laboratório Nacional de Energia e Geologia, Estrada do Paço do Lumiar, 22, 1649-038 Lisboa, Portugal

²C²TN, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066 Bobadela LRS, Portugal

Background

LocalEnergy project focuses on the valorization of endogenous resources (solar and mineral) through the development of energy-harvesting applications based on the tetrahedrite mineral, which offers a high exploitation potential. Naturally occurring tetrahedrite series consists of earth-abundant and relatively non-toxic elements and can be generically expressed as $Cu_6[Cu_4(Fe,Zn)_2]Sb_4S_{13}$. Besides that, tetrahedrites show ptype semiconductor material behavior with high Seebeck coefficient, a complex cubic crystal structure and extremely low thermal conductivities at moderate temperatures, reaching zT~0.7 around 700K after adequate doping. Owing to these properties they are considered as a suitable and promising thermoelectric material.

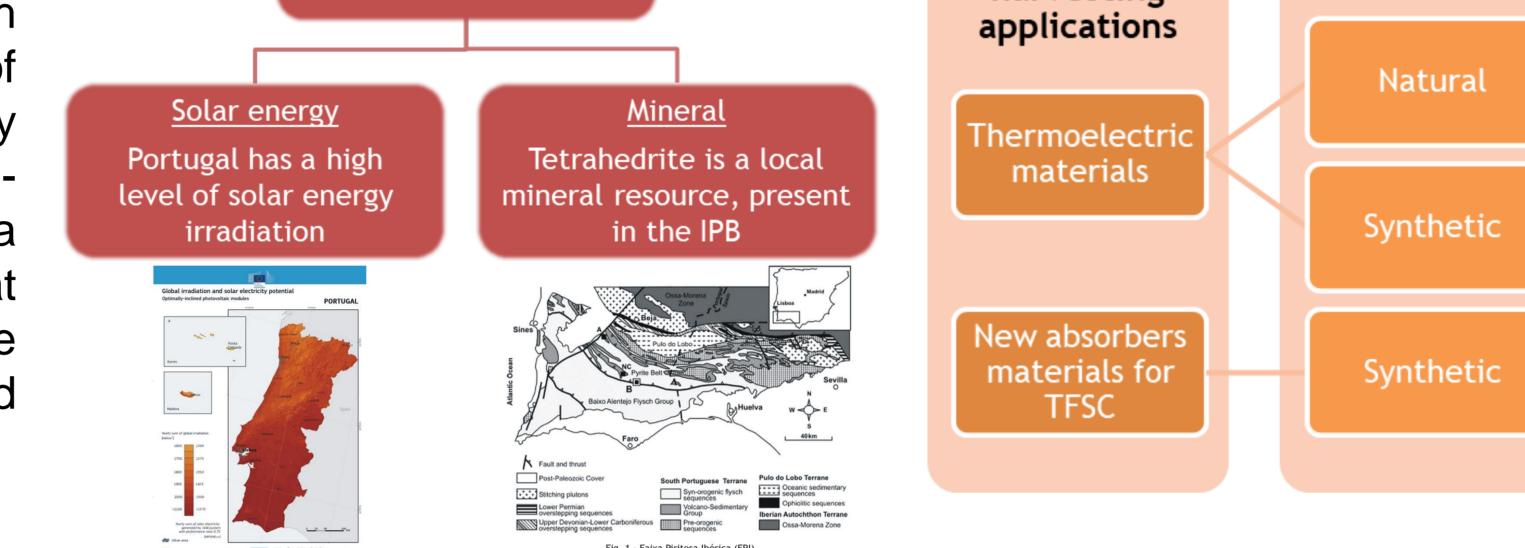
LocalEnergy characteristics

Valorization of two important endogenous resources

Develop materials and systems for energyharvesting

Tetrahedritebased materials $(Cu_{12-x}M_{x}Sb_{4}S_{13})$

Powder sintering of synthetic tetrahedrites


Target composition

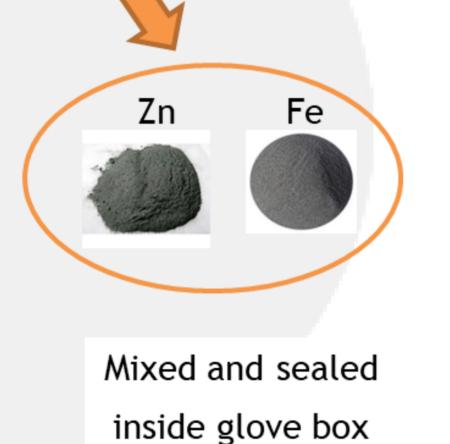
 $Cu_{12-x-y}Zn_{x}Fe_{y}Sb_{4}S_{13-z}$ x = 0, 0.5 and 1.0 y = 0, 0.5 and 1.0 z = 0, 0.1 and 0.3

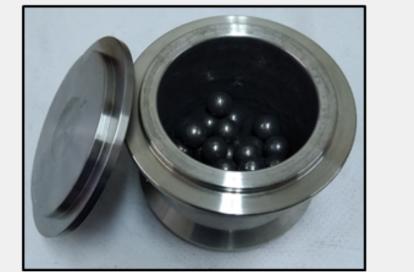
Raw materials

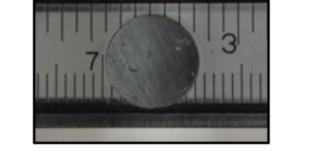
Cu

Mechanical alloying 380 rpm // 2 h BPR 20:1 stainless steel jars and balls (15 mm)

Objectives of the presente work

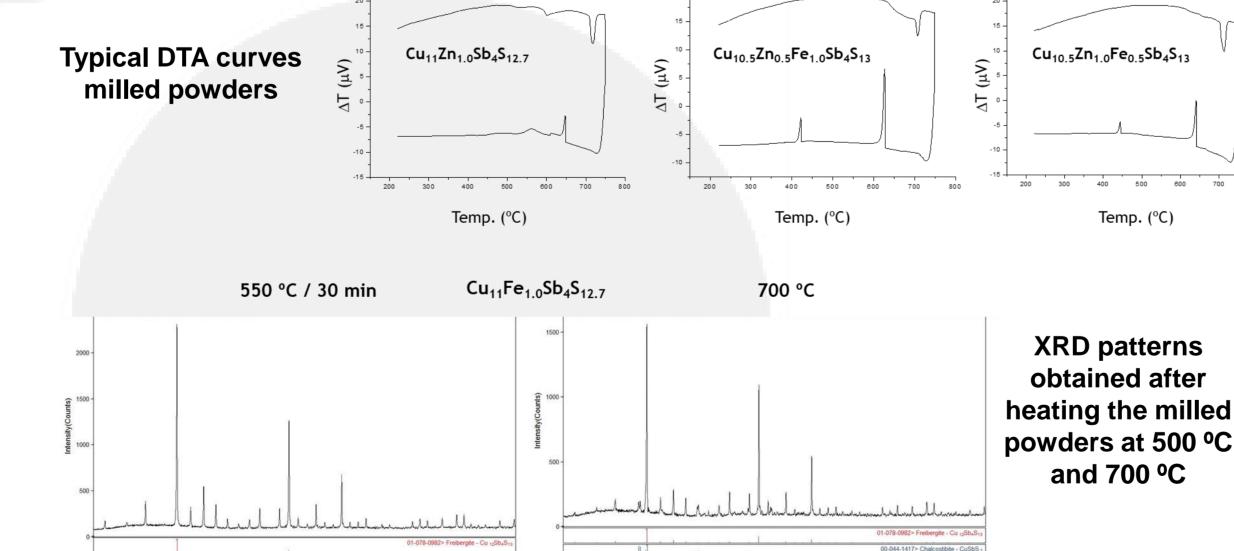

Develop a fast-solid-state synthesis method based on powder sintering for producing synthetic tetrahedrites.

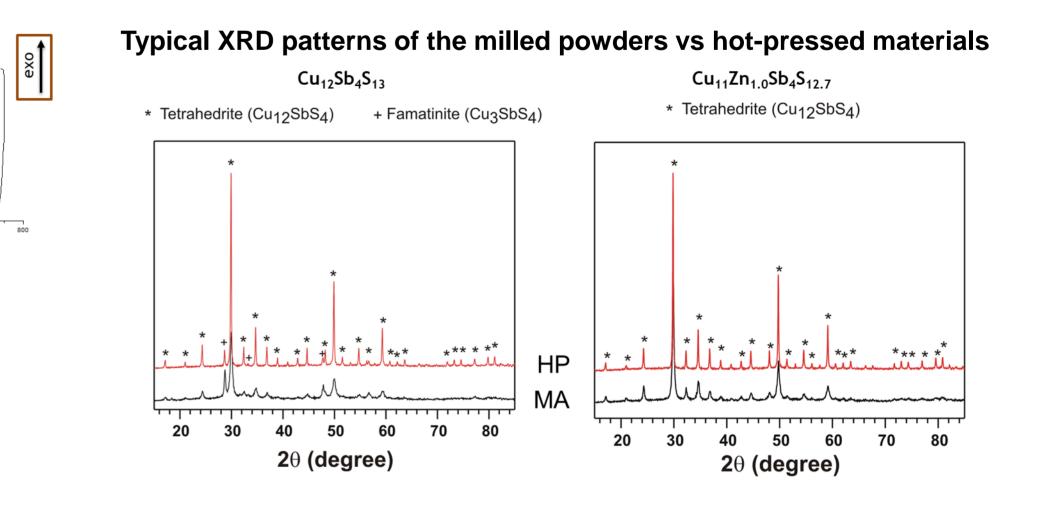

Hot-pressing 515 °C // 1h30m ~ 60 MPa 0.6 g


Conclusions

Direct synthesis of single-phase tetrahedrite materials achieved after a short mechanically alloying step (2 h).

- Fully dense bulk tetrahedrite materials were obtained by hotpressing.
- Reduction in the overall processing time when compared with that of conventional synthesis methods.

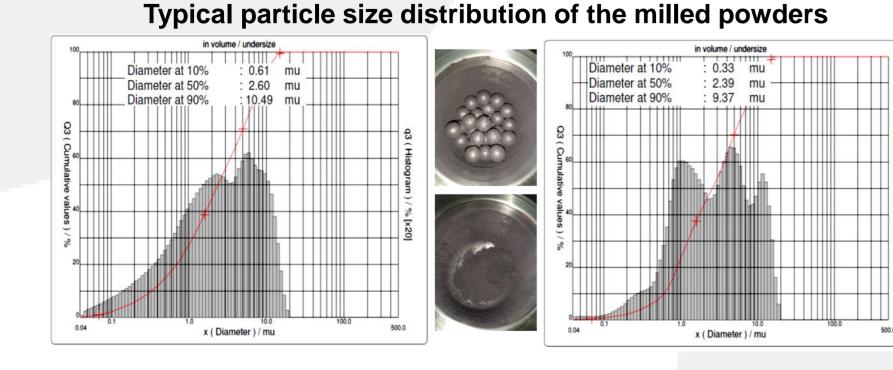

Cu_{10.5}Zn_{1.0}Fe_{0.5}Sb₄S₁₃


Results

Typical XRD patterns of the milled powders showing the formation of the tetrahedrite phase * Tetrahedrite (Cu₁₂SbS₄) + Famatinite (Cu₃SbS₄)

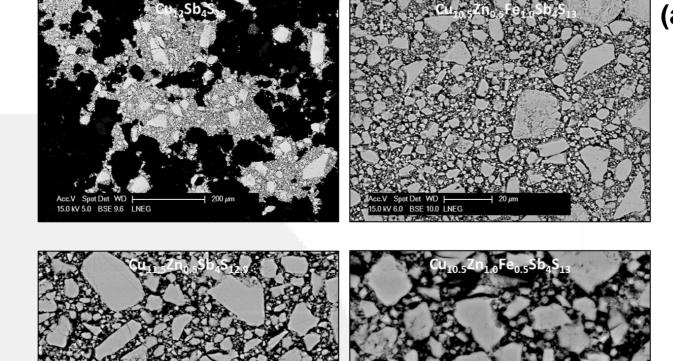
*** ** * * * * • * * Cu_{10.0}Fe_{1.0}Zn_{1.0}Sb₄S_{12.9} Cu_{11.5}Zn_{0.5}Sb₄S_{12.9} Cu_{11.5}Fe_{0.5}Sb₄S_{12.9} Cu_{10.5}Fe_{0.5}Zn_{1.0}Sb₄S₁₃ Cu_{10.5}Fe_{1.0}Zn_{0.5}Sb₄S₁₃ Cu_{11.0}Zn_{1.0}Sb₄S_{12.7} Cu_{11.0}Fe_{1.0}Sb₄S_{12.7} Cu_{11.0}Fe_{0.5}Zn_{0.5}Sb₄S_{12.7} Cu_{12.0}Sb₄S_{13.0}

60


2θ (degree)

30 40 50

Typical BSE images of the (a) milled powders and (b) hot-pressed materials


Typical density (g/cm³) obtained for the hot-pressed materials

Cu ₁₂ Sb ₄ S ₁₃	4.34
Cu ₁₁ Zn _{0.5} Fe _{0.5} Sb ₄ S _{12.7}	4.89
Cu ₁₁ Fe _{1.0} Sb ₄ S _{12.7}	5.01
Cu ₁₁ Zn _{1.0} Sb ₄ S _{12.7}	4.97
Cu _{10.5} Zn _{0.5} Fe _{1.0} SbS ₁₃	4.88
$Cu_{10.5}Zn_{1.0}Fe_{0.5}Sb_4S_{13}$	4.91
Cu _{11.5} Fe _{0.5} Sb ₄ S _{12.9}	4.80
Cu _{11.5} Zn _{0.5} Sb ₄ S _{12.9}	4.98
Cu _{10.0} Zn _{1.0} Fe _{1.0} Sb ₄ S _{12.9}	4.26
4.91 - 5.02 (g/cm ³)	

70

80

(b) Cu₁₂Sb₄S₁₃

Fundação

Acknowledgements

This work was funded by national funds through the FCT - Fundação para a Ciência e a Tecnologia, I.P., under the project LocalEnergy - Local para a Ciência Resources for Multifunctional Tetrahedrite-based Energy-Harvesting Applications (PTDC/EAM-PEC/29905/2017). e a Tecnologia

