Influence of protective atmosphere on the mechanical properties of 420 Stainless Steel (AISI) processed by Selective Laser Melting (SLM)

Centro de Engenharia Mecânica Materiais e Processos CEMMAPRE Centre for Mechanical Engineering Materials and Processes

. UC | UP | UTAD .

D. Gatões¹, R. Alves¹, H. Reis Marques¹, A. Mateus², M.T. Vieira¹

 (1) Group of Nanomaterials and Micromanufacturing - CEEMPRE Department of Mechanical Engineering – University of Coimbra
 (2) Center for Rapid and Sustainable Product Development - CDRSP
 School of Technology and Management - Polytechnic Institute of Leiria

cdrsp - centre for rapid and sustainable product development polytechnic institute of leiria

Introduction

Martensitic Stainless Steel (SS) 420 (AISI) combines strength, hardness and high corrosion resistance. However, due to it's high carbon content, has been highly marginalized by SLM processing. Selective laser melted steel undergo a series of phase transformations and chemical modifications during processing, depending on the processing characteristics. Amidst them, gaseous atmosphere, for example, could have an essential role on the properties of the final parts. However, commercial SLM equipments work under two typical atmospheres - nitrogen or argon. On this study, it is highlighted the effect of the atmosphere in 420 SS processed under argon and nitrogen on mechanical properties (tensile strength, Young modulus and hardness).

420 Stainless Steel (AISI)

500 _T

F(110)

Powder Characterizati

Processing: Selective Laser Melting

LASER type	Fiber (Ytterbium)
Potency (W)	400
Wavelength (nm)	1070
LASER diameter (µm)	87
LASER operation module	Continuous
Layer thickness (µm)	20-75
Minimum Wall size(µm)	140-160
Gas	Ar / N ₂
0 ₂ (%)	< 0.2
Maximum scanning speed	10 m/s

Equipment type

adaptado de: www.wadim.com.p

Characterization: Hardness/Young Modulus

Characterization: Tensile Tests

	Equipment type	SHIMADZU Autograph
	Cell (kN)	100
8	Norm	ISSO 6892
	Strain Gauge	SHIMADZU MFA 25
	Max rectangular section	50*14 mm

adaptado de: www.shimadzu.com

Characterization: X-Ray Diffraction

Anode type

Cobalt (Co)

A DESCRIPTION OF	P SHEAT		7	8	9	-				
		µ inch N/mm²	4	5	6	LOC	•			
and the second s	State 1	HAR (ADADA)	1	2	3	-				
FISCHERSCOP	е нюо		0	1	*	6		1		
						0	500t			
A S			E	ACCORE 1		0	1			
A CONTRACTOR OF								The second	Real Property in	

Indenter typeVickers (Diamond)Load range0.4-1000 mNLoad resolution0.04 mNDistance resolution100 pm

Fischerscope H100

X'Peri	Wavelenght	0.154 nm
	Goniometer	PW 3020/00
	Max. potency	2,2 kW
	Max .Voltage	60 kV
adaptado de: scientificservices.eu		

X-Ray Diffraction Comparison

Test Specimens Characterization

Stress at break (MPa) [Strain (%)] Ar atmosphere 805±36 [7±1] N₂ atmosphere 814±74 [9±1] Bulk 1550-1890 [5-11]

Hardness (HV) – 1000 mN

Ar atmosphere	759±35
N ₂ atmosphere	644±24
Bulk	540-590

Young Modulus (GPa)

159±26
148±9
195-205

Results ultimately show that there is a difference in the final structure of the parts built under a argon atmosphere and a nitrogen atmosphere. Although the presence of austenite may be expected, caused by the large presence of carbon, excessive austenite in parts processed under nitrogen, combined with a shift in austenite orientation (from (111) to (220)) are a sign that major structure changes occur under this atmosphere.

Tensile test specimens show that:

-The major driving force for stress at break is the presence of porosity;

-Young Modulus is highly affected by porosity present, as shown by Mackenzie, and must be taken in consideration in additive manufacturing (1973); -As expected, the presence of austenite leads to a lower hardness in parts processed under nitrogen atmosphere.

Conclusions