

Vibration control with shape memory alloys in civil engineering strutctures

Filipe Amarante dos Santos

Processing, characterization and applications of shape memory alloys

June 14, 2013

Generic stress-strain response of a SMA above A_f

Residual strain

Generic stress-strain response of a SMA below M_f

CIÊNCIAS E TECNOLOGIA UNIVERSIDADE NOVA DE LISBOA

Shape-memory and superelastic sequence. Three dimensional stress, strain and temperature diagram

Definition of energy dissipated E_D in a superelastic loading cycle and maximum strain energy E_{S0}

Vibration control with shape memory alloys in civil engineering strutctures

Small-scale steel framed prototype with SMA braces (adapted from Boroscheck)

SMA-based energy dissipating and re-centering brace (adapted from Dolce)

Adaptive vibration control device for bracing systems (adapted from Zhang and Zu)

Configuration of elastomeric bearings, friction-pendulum bearings, SE austenitic wires and MR dampers. Low-friction wheels for SMA wire installation (adapted from Shook)

Unseating of bridge at in-span hinge during an earthquake

Colapso de ponte durante o sismo de Northridge (1994)(Johnson et al.)

Colapso de ponte reforçada com elementos tradicionais de retenção, em aço, durante o sismo de Northridge (1994) (Johnson et al.)

Restraining solution with SMA elements in a multi-span simply supported bridge

Schematic of the test setup and SMA restrainer cable (adapted from Johnson)

SMA restrainer test setup (adapted from Johnson)

Schematic of the test setup and SMA restrainer cable (adapted from Padgett)

SMA restrainer test setup (adapted from Johnson)

Vibration control with shape memory alloys in civil engineering strutctures

Reinforcement details of beam-column element with coupler (dimensions in mm) (adapted from Alam)

Schematic of the SMA-based connection test setup (adapted from Ocel)

SMA-based full-scale connection test setup (adapted from Ocel)

Basilica of St. Francis of Assisi in Italy

(a) General view.

(b) Anchorage detail of SMAD.

(c) SMAD application.

(d) SMADs arrangement.

St. Feliciano Cathedral in Italy

(a) General view

(b) SMADs arrangement

(c) SMAD (F = 27 kN, $\Delta u = \pm 20$ mm) (d) Anchorage detail of SMAD

S. Giorgio Church Bell-Tower in Italy

(a) General view

(b) SMAD application

Bridge carrying Sherman Road over US-31, USA

(a) General view

(b) Shear cracks on beam stem

(d) Heating of SMA rods

Experimental equipment: (a-b) testing machine and temperature controlled chamber; (c) gripping jaws

(a)

<image>

CARACTERIZAÇÃO DA SUPERELASTICIDADE Ensaios de tracção

CARACTERIZAÇÃO DA SUPERELASTICIDADE Ensaio DSC (Differential Scanning Calorimetry)

CARACTERIZAÇÃO DA SUPERELASTICIDADE Ensaios de tracção com temperatura variável (CCC)

CARACTERIZAÇÃO DA SUPERELASTICIDADE

Influência da temperatura ambiente no amortecimento

CARACTERIZAÇÃO DA SUPERELASTICIDADE Ensaios de tracção com ciclos parciais

CARACTERIZAÇÃO DA SUPERELASTICIDADE Influência da amplitude da extensão no amortecimento

 ζ_{eq} [%] MemoryMetalleEuroflex ε [%]

Temperature patterns within the SE wire specimen, during the loading-unloading tensile test at a strain rate of 0.250%/s

Dynamic tensile tests: strain-rate influence on temperature time-history

Dynamic tensile tests: strain-rate influence on temperature time-history

MODELO EXPERIMENTAL

Influência da velocidade no amortecimento)

CARACTERIZAÇÃO DA SUPERELASTICIDADE Ensaios de tracção cíclicos

CARACTERIZAÇÃO DA SUPERELASTICIDADE Ensaios de tracção cíclicos

Evolution of the cumulative creep deformation due to cycling.

MODELAÇÃO DA SUPERELASTICIDADE Lei mecânica: $\sigma(\varepsilon, T, \xi)$

MODELAÇÃO DA SUPERELASTICIDADE Lei cinética: $\xi(\sigma, T)$

MODELAÇÃO DA SUPERELASTICIDADE Lei de balanço energético: $q_{gen}(\xi, W)$

Vibration control with shape memory alloys in civil engineering strutctures

MODELAÇÃO DA SUPERELASTICIDADE Estudo paramétrico: $\zeta_{eq}(f)$

MODELAÇÃO DA SUPERELASTICIDADE

Sistema dinâmico superelástico com 1 grau de liberdade: método de Newmark

MODELAÇÃO DA SUPERELASTICIDADE Pré-esforço em aplicações superelásticas

MODELAÇÃO DA SUPERELASTICIDADE Sistema com um elemento SE ($T = 20^{\circ}$ C, f = 2 Hz)

0.06

0.06

MODELAÇÃO DA SUPERELASTICIDADE Sistema com dois elementos SE ($T = 20^{\circ}$ C, f = 2 Hz)

(c) Stress time-history

(d) Force-displacement

MODELAÇÃO DA SUPERELASTICIDADE Sistema com três elementos SE ($T = 20^{\circ}$ C, f = 2 Hz)

MODELAÇÃO DA SUPERELASTICIDADE

Sistema de retenção para pontes baseado em elementos superelásticos

MODELAÇÃO DA SUPERELASTICIDADE Viaduto de São Martinho

Legend: 1. SMA device, 2. Abutment, 3. Transverse girder, 4. Main girder

MODELAÇÃO DA SUPERELASTICIDADE Histograma da acção sísmica

MODELAÇÃO DA SUPERELASTICIDADE Seismic response of a viaduct with f = 1.0 Hz and A = $5\% A_{max}$

Vibration control with shape memory alloys in civil engineering strutctures

MODELAÇÃO DA SUPERELASTICIDADE

Parametric curves in function of the SE restraining area: displacement

MODELAÇÃO DA SUPERELASTICIDADE Parametric curves in function of the SE restraining area: velocity

MODELAÇÃO DA SUPERELASTICIDADE

Parametric curves in function of the SE restraining area: acceleration

NOVO DISPOSITIVO DE CONTROLO Sistema passivo sem pré-esforço e com pré-esforço

NOVO DISPOSITIVO DE CONTROLO Esquema funcional do novo dispositivo

NOVO DISPOSITIVO DE CONTROLO Funcionamento do controlador on-off

NOVO DISPOSITIVO DE CONTROLO

Novo dispositivo submetido a solicitações harmónicas

NOVO DISPOSITIVO DE CONTROLO Estudo comparativo: sismo "kobe"

NOVO DISPOSITIVO DE CONTROLO Estudo comparativo: sismo "kobe"

Ponte simplesmente apoiada com sistema de retenção superelástico

Fase de projecto: conceito geral do dispositivo

Fase de projecto: módulo com massa móvel

Fase de projecto: sensor de força

Fase de projecto: actuador linear

MODELO EXPERIMENTAL Sensor de força

MODELO EXPERIMENTAL Protótipo completo

Ensaio do protótipo completo

Vibration control with shape memory alloys in civil engineering strutctures

MODELO EXPERIMENTAL Diagrama de blocos do protótipo

MODELO EXPERIMENTAL

Estudo paramétrico: pré-esforço no protótipo ($\zeta_{eq} = 10\% \rightarrow \zeta_{eq} = 23\%$)

MODELO EXPERIMENTAL

Resultados: histograma da força em SE1

MODELO EXPERIMENTAL

Resultados: evolução do diagrama força-deslocamento

MODELO EXPERIMENTAL Resultados: histograma da aceleração

SUPERB

Seismic Unseating Prevention. Elements for Retrofitting of Bridges: PTDC/ECM/117618/2010

http://cornel.dec.fct.unl.pt/SUPERB/index.php

Vibration control with shape memory alloys in civil engineering strutctures

Obrigado pela atenção.

Vibration control with shape memory alloys in civil engineering strutctures