Bio-inspired/Water activated Systems for CO2 capture

Gonçalo V. S. M. Carrera, Luís C. Branco, Manuel Nunes da Ponte

1st Workshop CO2 SEQUESTRATION AND UTILIZATION at REQUIMTE

Introduction

- In the present environmental and energetic context frameworks for CO₂ capture are highly sought.
- Commercial systems in the market available for more than 60 years – Aqueous solutions of alkanolamines
- Major drawbacks:
 - Requirement of dilution of the capture agent in water (in order to avoid corrosion and mitigate excessive release of heat during reaction)
 - Moderate performances in CO₂ capture (7 wt% of CO₂ uptake in 30% aqueous solution of ethanolamine)
 - High energy demand for CO₂ stripping, due to the high heat capacity of water.
 - 4 Additionally, the solvent is lost during operations

Is here presented alternative CO₂ capture systems based on compounds from chiral pool, cheap carboxylic acids and organic superbases

Reversible Systems Based on CO₂, Amino-acids and Organic Superbases

Gonçalo V. S. M. Carrera, Noémi Jordão, Miguel M. Santos,a Manuel Nunes da Ponte and Luís C. Branco

RSC Adv., 2015,5, 35564-35571

Organic superbases

Aminoacids from chiral pool

Main Results

Compound	T_d
	(°C)
[TMGH ⁺] ₂ [GlyCOO ⁻]	> 120
[DBUH ⁺] ₂ [GlyCOO ⁻]	106.36
[TMGH ⁺], [AlaCOO ⁻]	> 88
[DBUH ⁺], [AlaCOO ⁻]	101.77
[TMGH ⁺] ₂ [ValCOO ⁻]	> 120
[DBUH ⁺] ₂ [ValCOO ⁻]	96.35
[TMGH ⁺] ₂ [LeuCOO ⁻]	109.07
[DBUH ⁺] ₂ [LeuCOO ⁻]	95.6
[TMGH ⁺] ₂ [PheCOO ⁻]	93.79
[DBUH ⁺] ₂ [PheCOO ⁻]	86.91
[TMGH ⁺] ₂ [TrpCOO ⁻]	> 74
[DBUH ⁺] ₂ [TrpCOO ⁻]	79.62

 Amino-acid based carbamate salts were successfully prepared using CO₂ and an Organic Superbase.

For DBU based salts, as the size of R- group of the amino-acid increases the value of T_d, associated to CO₂ release, decreases.

Saccharides and derived structures

$$\begin{bmatrix} R \\ H \end{bmatrix}_{X} \qquad R, R' = \begin{bmatrix} H & \text{or } C & \text{or } O \end{bmatrix}$$

Organic Superbases

SB

$$\begin{array}{c}
R \\
R'
\end{array}$$

$$\begin{array}{c}
CO_2 \\
R'
\end{array}$$

$$\begin{array}{c}
CO_2 \\
R'
\end{array}$$

$$\begin{array}{c}
CO_2 \\
R'
\end{array}$$

$$\begin{array}{c}
R \\
R'
\end{array}$$

$$\begin{array}{c}
CO_2 \\
R'
\end{array}$$

$$\begin{array}{c}
R \\
R'
\end{array}$$

$$\begin{array}{c}
CO_2 \\
R'
\end{array}$$

$$\begin{array}{c}
R \\
R'
\end{array}$$

$$\begin{array}{c}
CO_2 \\
R'
\end{array}$$

$$\begin{array}{c}
R \\
R'
\end{array}$$

$$\begin{array}{c}
CO_2 \\
R'
\end{array}$$

$$\begin{array}{c}
R \\
R'
\end{array}$$

$$\begin{array}{c}
CO_2 \\
R'
\end{array}$$

$$\begin{array}{c}
R \\
R'
\end{array}$$

$$\begin{array}{c}
CO_2 \\
R'
\end{array}$$

$$\begin{array}{c}
R \\
R'
\end{array}$$

$$\begin{array}{c}
CO_2 \\
R'
\end{array}$$

$$\begin{array}{c}
R \\
R'
\end{array}$$

$$\begin{array}{c}
CO_2 \\
R'
\end{array}$$

$$\begin{array}{c}
R \\
R'
\end{array}$$

$$\begin{array}{c}
CO_2 \\
R'$$

$$\begin{array}{c}
R \\
R'
\end{array}$$

$$\begin{array}{c}
CO_2 \\
R'$$

$$\begin{array}{c}
R''
\end{array}$$


$$\begin{array}{c}
R''$$


$$\begin{array}$$

CO, Capture systems based on saccharides and organic superbases

G. V. S. M. Carrera, N. Jordão, L. C. Branco and M. Nunes da Ponte

Faraday Discuss., 2015,183, 429-444

- Best performance: D-Mannose:DBU $(0.625:1 in equivalents) \rightarrow 13.9 wt\% of$ CO₂ uptake and 3.3/5 alcohol groups to carbonates.
- Energy Requirement for CO, strip \rightarrow (2790 kJ/kg CO₂) Benchmark system \rightarrow (3873 kJ/kg CO₂).

Aqueous Carboxylic Acid-Based Solutions for CO₂ Capture

In progress...

Acknowledgments

FCT/MCT for financial support (postdoctoral fellowship GVSMC:SFRH/BPD/72095/2010)

