

DECISION-MAKING COMPETENCES: ASSESSMENT APPROACH TO A NEW MODEL

26 June 2014

Maria João Maia

Supervisors: Prof. António Brandão Moniz Prof. Michel Decker

What I Wanted To Know...

How is the decision-making process characterized?

What I Wanted To Know...

Who are the potential decision-makers?

Literature review ...

Competence is the intersection of three axes (Le Boterf, 1995):

- individual
- educational background
- professional experience

Competencies are operationalized at the level of "Knowledge." The knowledge can be described as: **knowledge per se, how to do, how to be** and **how to learn**, which correspond respectively to the skills acquired in training, the skills acquired in the performance of the profession, to attitudes that the professional assume in his daily life and cognitive abilities that allow to learn, think and process information (Maia, 2012).

BUT Its not a state of being ... nor restricted to a specific knowledge or know-how

Competences

NOT Directly measured

LATENT VARIABLE

AND

It would be helpful to know whether the different knowledge's really do reflect a single variable -

COMPETENCE

Are these different variables driven by the same underlying variable?

Method Choice ...

- to understand the structure of a set of variables
- to construct a questionnaire to measure an underlying variable

Statistical Method (technique) for identifying groups or clusters of variables to reduce a data set to a more manageable size retaining as much of the original information as possible

What I Did ...

Approach to **SEM** Analysis Theory Model Construction – MODEL 1 **S**tructural Instrument Construction **E**quation **M**odelling **Data Collection** Model Testing – MODEL 2 **Results – MODEL 3** Interpretation

Lickert Scale: "Don't agree" --- "Fully agree"

- National Level
- Private sector
- Public sector
- Hospitals
- Private Practices

- Paper
- On-line

- 297 Valid Data
- no missing values

1st Factorial Analysis

a) Assessment of the suitability of the data for FA – Sample size

"Thumb rule" - The number of subjects should be the larger of 5 times the number of variables (Verma, 2013)

$$29 \times 5 = 145$$
 (297)

KMO and Bartlett's Test					
Kaiser-Meyer-Olkin Measure of Sampling Adequacy. ,922			Superb		
Bartlett's Test of Sphericity	Approx. Chi-Square	5200,483			
	df	406			
	Sig.	,000			

KMO (0-1) > 0.9 Superb adequacy of data for running FA Field (2009) and Verma (2013)

EFA seeks to uncover the underlying structure of a relatively large set use of variables.

À priori assumptions is that any indicator may be associated with any factor

MODEL TESTING

b) Exploratory Factorial Analysis – Principal Factor Analysis (principal axis factoring)

b1. Extraction

PHASE 4

Involves examining the graph of the eigenvalues (and looking for the break point in the data where the curve flatters out).

Eigenvalues measure the amount of variation in the total sample accounted for by each factor.

..... If a factor has a low eigenvalue then it is contributing little to the explanation of variances in the variables and may be ignore as redundant with more important factors

MODEL TESTING

b1. Extraction (cont.)

Total Variance Explained							
	Initial Eigenvalues			Extraction Sums of Squared Loadings			
Factor	Total	% of Variance	Cumulative %	Total	% of Variance	Cumulative %	
1	10,763	37,114	37,114	10,367	35,747	35,747	
2	3,156	10,881	47,995	2,809	9,685	45,432	
3	2,137	7,370	55,365	1,826	6,296	51,728	
4	1,193	4,113	59,477	,786	2,712	54,440	
5	1,055	3,638	63,115	,671	2,315	56,755	
6	1,019	3,515	66,631	,527	1,817	58,572	
7	,870	2,999	69,630				
8	,824	2,843	72,472				
9	,742	2,560	75,032				

Kaiser criterion – drop all factors with eigenvalues under 1.0

Once the number of factor have been determined the next step is to interpret them.

In this step, factors will be "rotated". Rotation maximizes the loading of each variable on one of the extended factors while minimizing the loading on all other factors (Andy Field 2009, p. 653).

This step will make more clear which variables relate to which factors.

After orthogonal rotation, one should apply oblique rotation just to be sure that he factors are truly uncorrelated (results should be nearly identical)

(Osborne and Costello, 2005)

	Rotate	ed Factor Matri	X ^a			
	1	2	Fact	tor 4	5	6
Initiative for problem resolution	.765	<u>Z</u>	5	_		0
Responsibility in decision	.734					
Auto confident and determine	.680					
Resolution of problems with creativity	675					
Open communication	,666					
Principles of Ethical Conduct	,658					
Share information and knowledge	,640			,578		
Organization task ahead	,592					
Information critical analysis	,579					
Use of equipment with knowledge	,559			,500		
Integration in team works	,510					
To be listen an taken into account						
Potential implication of problem resolution						
Conducting activities autonomously						
Physical Science		,937				
Radiobiology and Radiation Protection		,769				
Medical Science		,708 675				
Electronics and Clinical Instrumentation		,075 610				
Projects and activities execution		,010	,834			
Internal quality assessment measures			,769			
Rationalization measures			,746			
Innovative solutions proposal			,718			
Take measures in useful time						
Adherence to innovations and technology				,649		
Availability for research projects				,506		
Communication and Behavioural Sciences					,713	
Information Technologies					,543	
Management and Administration						

Factor loadings less

displayed since they

then 0,5 are not

were suppressed.

The variables are

of their factor

loadings.

listed in order of size

Extraction Method: Principal Axis Factoring.

Rotation Method: Varimax with Kaiser Normalization.

a. Rotation converged in 13 iterations.

Extraction Method: Principal Axis Factoring.

Rotation Method: Varimax with Kaiser Normalization.

a. Rotation converged in 13 iterations.

MODEL TESTING

c) Reliability Analysis

Sub-scales	Cronbach's alfa	Internal Consistency
1. Personality Characteristics	0.918	Excellent
2. Knowledge	0.899	Good
3. Mangement	0.873	Good
4. Pro-activity	0.707	Good
5. Complementary Knowledge	0.746	Good

PHASE 5

RESULT – NEW MODEL

SEM is a collection of tools for analysis connections between various concepts in cases where these connections are relevant either for expanding our general knowledge or for solving some problems.

Factor analysis technique reduces the large number of variables into few underlying factors to explain the variability of the group characteristics. The concept used in factor analysis technique is to investigate the relationship among the group of variables and segregate them in different factors on the basis of their relationship.

> ✓ From a TA point of view, it might be interesting to develop a questionnaire that could "measure" the respondents "competences" for a *possible* connection to the decision-making process characterization.

Different applications:

- Social Sciences (assess personality, motivations...)
- Economics (analyse productivity, profits, workforce...)
- Politics (factors affecting decision-making....)
- Health Sciences (relation between stress and low birth weight...)

Questions ?

Thank you.....

Maria João Maia

mj.maia@campus.fct.unl.pt maria.maia@kit.edu

